Jacobi algebras and Lie-Rinehart-Jacobi algebras. (Algèbres de Jacobi et algèbres de Lie-Rinehart-Jacobi.) (French. English summary) Zbl 1163.17025

Summary: We define the Jacobi 1-form and the Jacobi 2-form of a Jacobi algebra. We construct the Jacobi differential complex and describe Jacobi cohomology. We show that a Jacobi algebra determines a Lie-Rinehart-Jacobi algebra and that, conversely, a symplectic Lie-Rinehart-Jacobi algebra determines a Jacobi algebra structure on the base algebra.


17B63 Poisson algebras
53D17 Poisson manifolds; Poisson groupoids and algebroids
Full Text: DOI


[1] Banyaga, A., A geometric integration of the extended Lee homomorphism, J. geom. phys., 39, 30-44, (2001) · Zbl 1032.53017
[2] N. Bourbaki, Algèbre, chapitres 1 à 3, Hermann, Paris 1970
[3] Godbillon, C., Géométrie différentielle et Mécanique analytique, () · Zbl 0174.24602
[4] Iglesias, D.; Marrero, J.C., Some linear Jacobi structures on vector bundles, C. R. acad. sci. Paris I, 331, 125-130, (2000) · Zbl 0983.53055
[5] Kerbrat, Y.; et Souici-Benhammadi, Z., Variétés de Jacobi et groupoïdes de contact, C. R. acad. sci. Paris I, 317, 81-86, (1993) · Zbl 0804.58015
[6] Huebschmann, J., Poisson cohomology and quantization, J. reine angew. math., 408, 57-113, (1990) · Zbl 0699.53037
[7] Lichnerowicz, A., Sur LES algèbres de Lie locales de Kirillov-schiga, C. R. acad. sci. Paris I, 296, 915-920, (1983) · Zbl 0537.53037
[8] Lichnerowicz, A., Dérivations d’algèbres de Lie attachées à une algèbre de Lie locale de Kirillov, C. R. acad. sci. Paris I, 297, 261-266, (1983) · Zbl 0537.53038
[9] Rinehart, G., Differential forms for general commutative algebras, Trans. amer. math. soc., 108, 195-222, (1963) · Zbl 0113.26204
[10] Vaisman, I., Locally conformal symplectic manifolds, Internat. J. math. math. sci., 8, 3, 521-536, (1985) · Zbl 0585.53030
[11] Vaisman, I., Lectures on the geometry of Poisson manifolds, () · Zbl 0155.31003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.