# zbMATH — the first resource for mathematics

A simple proof of the faithfulness of the Lawrence-Krammer-Paris representation. (Une démonstration simple de la fidélité de la représentation de Lawrence-Krammer-Paris.) (French) Zbl 1163.20025
Summary: The theorem of linearity of the Artin-Tits groups of spherical type and the theorem of injectivity of any Artin-Tits monoid in its group are essentially based on the faithfulness of the Lawrence-Krammer-Paris representation restricted to the monoid. We prove this faithfulness using neither the normal forms of the elements of the monoid nor the closed subsets of the associated root system; only very elementary notions are needed.

##### MSC:
 20F36 Braid groups; Artin groups 20C15 Ordinary representations and characters
Full Text:
##### References:
 [1] Bigelow, S., Braid groups are linear, J. amer. math. soc., 14, 471-486, (2001) · Zbl 0988.20021 [2] Brink, B.; Howlett, R.B., A finiteness property and an automatic structure for Coxeter groups, Math. ann., 296, 179-190, (1993) · Zbl 0793.20036 [3] Bourbaki, N., Groupes et algèbres de Lie, (1981), Masson Paris, Chapitres IV, V, VI · Zbl 0483.22001 [4] Brieskorn, E.; Saito, K., Artin-gruppen und Coxeter-gruppen, Invent. math., 17, 245-271, (1972) · Zbl 0243.20037 [5] A. Castella, Automorphismes et admissibilité dans les groupes de Coxeter et les monoïdes d’Artin-Tits, Thèse, Orsay, 2006 [6] Crisp, J., Injective maps between Artin groups, (), 119-137 · Zbl 1001.20034 [7] Cohen, A.M.; Wales, D.B., Linearity of Artin groups of finite type, Israel J. math., 131, 101-123, (2002) · Zbl 1078.20038 [8] Deligne, P., LES immeubles des groupes de tresses généralisés, Invent. math., 17, 273-302, (1972) · Zbl 0238.20034 [9] Digne, F., On the linearity of Artin braid groups, J. algebra, 268, 39-57, (2003) · Zbl 1066.20044 [10] Garside, F.A., The braid group and other groups, Q. J. math. Oxford (2), 20, 235-254, (1969) · Zbl 0194.03303 [11] Krammer, D., The braid group $$B_4$$ is linear, Invent. math., 142, 451-486, (2000) · Zbl 0988.20023 [12] Krammer, D., Braid groups are linear, Ann. of math., 155, 131-156, (2002) · Zbl 1020.20025 [13] Lawrence, R.J., Homological representations of the Hecke algebra, Comm. math. phys., 135, 141-191, (1990) · Zbl 0716.20022 [14] Michel, J., A note on words in braid monoids, J. algebra, 215, 366-377, (1999) · Zbl 0937.20017 [15] Mühlherr, B., Coxeter groups in Coxeter groups, (), 277-287 · Zbl 0820.20048 [16] Paris, L., Artin monoids inject in their groups, Comment. math. helv., 77, 609-637, (2002) · Zbl 1020.20026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.