Avetisyan, Karen; Stević, Stevo Extended Cesàro operators between different Hardy spaces. (English) Zbl 1163.32004 Appl. Math. Comput. 207, No. 2, 346-350 (2009). Summary: Let \(H^p\) denote the Hardy space of holomorphic functions on the unit ball \(\mathbb B\). This note gives some sufficient and necessary conditions for the boundedness and compactness of the following extended Cesàro operators\[ T_gf(z)=\int^1_0 f(tz) \operatorname{Re} g(tz) \frac{dt}{t}\quad\text{and}\quad L_gf(z)= \int^1_0 \operatorname{Re} f(tz) g(tz) \frac{dt}{t}\,, \]where \(z\in\mathbb B\) and \(g\) is a fixed holomorphic map on \(\mathbb B\), acting from the space \(H^p\) into the space \(H^q\), for the case \(p<q\). Our results extend and simplify some one-dimensional results. Cited in 26 Documents MSC: 32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables Keywords:extended Cesàro operators; unit ball; Hardy space; Bloch space; boundedness; compactness PDF BibTeX XML Cite \textit{K. Avetisyan} and \textit{S. Stević}, Appl. Math. Comput. 207, No. 2, 346--350 (2009; Zbl 1163.32004) Full Text: DOI OpenURL References: [1] Aleman, A.; Cima, J.A., An integral operator on \(H^p\) and hardy’s inequality, J. anal. math., 85, 157-176, (2001) · Zbl 1061.30025 [2] Beatrous, F.; Burbea, J., Holomorphic Sobolev spaces on the ball, Diss. math., 276, 1-57, (1989) · Zbl 0628.42007 [3] Chang, D.C.; Li, S.; Stević, S., On some integral operators on the unit polydisk and the unit ball, Taiwanese J. math., 11, 5, 1251-1286, (2007) · Zbl 1149.47026 [4] Chang, D.C.; Stević, S., Estimates of an integral operator on function spaces, Taiwanese J. math., 7, 3, 423-432, (2003) · Zbl 1052.47044 [5] Chang, D.C.; Stević, S., The generalized Cesàro operator on the unit polydisk, Taiwanese J. math., 7, 2, 293-308, (2003) · Zbl 1065.47033 [6] Chang, D.C.; Stević, S., Addendum to the paper “A note on weighted Bergman spaces and the Cesàro operator”, Nagoya math. J., 180, 77-90, (2005) · Zbl 1090.32500 [7] Clahane, D.; Stević, S., Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. inequal. appl., 2006, (2006), Article ID 61018, 11 pages · Zbl 1131.47018 [8] Hu, Z.J., Extended Cesàro operators on mixed norm spaces, Proc. amer. math. soc., 131, 7, 2171-2179, (2003) · Zbl 1054.47023 [9] Hu, Z.J., Extended Cesàro operators on the Bloch space in the unit ball of \(\mathbb{C}^n\), Acta math. sci. ser. B engl. ed., 23, 4, 561-566, (2003) · Zbl 1044.47023 [10] Hu, Z.J., Extended Cesàro operators on Bergman spaces, J. math. anal. appl., 296, 435-454, (2004) · Zbl 1072.47029 [11] Li, S., Riemann – stieltjes operators from \(F(p, q, s)\) to Bloch space on the unit ball, J. inequal. appl., 2006, (2006), Article ID 27874, 14 pages [12] Li, S.; Stević, S., Integral type operators from mixed-norm spaces to \(\alpha\)-Bloch spaces, Integral transform. spec. funct., 18, 7, 485-493, (2007) · Zbl 1131.47031 [13] Li, S.; Stević, S., Riemann – stieltjes type integral operators on the unit ball in \(\mathbb{C}^n\), Complex variables elliptic equations, 52, 6, 495-517, (2007) · Zbl 1124.47022 [14] Li, S.; Stević, S., Compactness of riemann – stieltjes operators between \(F(p, q, s)\) and α-Bloch spaces, Publ. math. debrecen, 72, 1-2, 111-128, (2008) · Zbl 1164.47040 [15] Li, S.; Stević, S., Riemann – stieltjes operators on Hardy spaces in the unit ball of \(\mathbb{C}^n\), Bull. belg. math. soc. Simon stevin, 14, 621-628, (2007) · Zbl 1136.47023 [16] Li, S.; Stević, S., Generalized composition operators on Zygmund spaces and Bloch type spaces, J. math. anal. appl., 338, 1282-1295, (2008) · Zbl 1135.47021 [17] Li, S.; Stević, S., Products of integral-type operators and composition operators between Bloch-type spaces, J. math. anal. appl., 349, 596-610, (2009) · Zbl 1155.47036 [18] Li, S.; Stević, S., Products of Volterra type operator and composition operator from \(H^\infty\) and Bloch spaces to the Zygmund space, J. math. anal. appl., 345, 40-52, (2008) · Zbl 1145.47022 [19] S. Li and S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin, in press. [20] Li, S.; Wulan, H., Characterizations of α-Bloch spaces on the unit ball, J. math. anal. appl., 343, 1, 58-63, (2008) · Zbl 1204.32006 [21] Rudin, W., Function theory in the unit ball of \(\mathbb{C}^n\), (1980), Springer-Verlag New York · Zbl 0495.32001 [22] Stević, S., On an integral operator on the unit ball in \(\mathbb{C}^n\), J. inequal. appl., 1, 81-88, (2005) · Zbl 1074.47013 [23] Stević, S., Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. pure appl. math., 37, 6, 343-355, (2006) · Zbl 1121.47032 [24] Stević, S., Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. mat. zh., 48, 3, 694-706, (2007) · Zbl 1164.47331 [25] Stević, S., On \(\alpha\)-Bloch spaces with Hadamard gaps, Abstr. appl. anal., 2007, (2007), Article ID 39176, 7 pages [26] Stević, S., Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. math., 76, 59-64, (2008) · Zbl 1160.47027 [27] Stević, S., Norm of weighted composition operators from Bloch space to \(H_\mu^\infty\) on the unit ball, Ars. combin., 88, 125-127, (2008) · Zbl 1224.30195 [28] Stević, S., On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball, Discrete dyn. nat. soc., 2008, (2008), Article ID 154263, 14 pages · Zbl 1155.32002 [29] S. Stević, Extended Cesàro operators between mixed-norm spaces and Bloch-type spaces in the unit ball, Houston J. Math., in press. [30] S. Stević, The boundedness and compactness of an integral operator between \(H^\infty\) and a mixed-norm space on the polydisc, Sibirsk. Mat. Zh., in press. [31] Tang, X., Extended Cesàro operators between Bloch-type spaces in the unit ball of \(\mathbb{C}^n\), J. math. anal. appl., 326, 2, 1199-1211, (2007) · Zbl 1117.47022 [32] Ueki, S.I.; Luo, L., Compact weighted composition operators and multiplication operators between Hardy spaces, Abstr. appl. anal., 2008, (2008), Article ID 196498, 11 pages · Zbl 1167.47020 [33] Yamashita, S., Gap series and α-Bloch functions, Yokohama math. J., 28, 31-36, (1980) · Zbl 0467.30001 [34] Zhu, K., Spaces of holomorphic hunctions in the unit ball, Graduate texts in mathematics, 226, (2005), Springer-Verlag New York This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.