zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generating the periodic solutions for forcing van der Pol oscillators by the iteration perturbation method. (English) Zbl 1163.34355
Summary: In this paper, the iteration perturbation method proposed by {\it J.H. He} [Non-perturbative methods for strongly nonlinear problems, Dissertation.de-Verlag im Internet GmbH (2006); Chaos Solitons Fractals 26, No. 3, 827--833 (2005; Zbl 1093.34520)] is used to generate periodic solutions of van der Pol oscillator with a forcing term, forcing oscillator with quadratic type damping and van der Pol oscillator with excitation term. The comparison of the obtained results verifies its convenience and effectiveness.

MSC:
34C25Periodic solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] Nayfeh, A. H.: Problems in perturbations. (1985) · Zbl 0573.34001
[2] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern phys. B 10, 1141-1199 (2006) · Zbl 1102.34039
[3] J.H. He, Non-perturbative methods for strongly nonlinear problems, Dissertation. de-Verlag im Internet GmbH, 2006
[4] He, J. H.: Determination of limit cycles for strongly nonlinear oscillators. Phys. rev. Lett 90, No. 17, 174301 (2003)
[5] Öziş, T.; Yıldırım, A.: Determination of frequency--amplitude relation for Duffing- harmonic oscillator by the energy balance method. Chaos solitons fractals 54, No. 7--8, 1184-1187 (2007) · Zbl 1147.34321
[6] He, J. H.: Homotopy perturbation technique. Comput. methods appl. Mech. eng 178, 257-262 (1999) · Zbl 0956.70017
[7] He, J. H.: Homotopy perturbation method: A new nonlinear analytical technique. Appl. math. Comput. 135, 73-79 (2003) · Zbl 1030.34013
[8] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Non-linear sci. Numer. simul. 6, No. 2, 207-208 (2005)
[9] Öziş, T.; Yıldırım, A.: A note on he’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos solitons fractals 34, No. 3, 989-991 (2007)
[10] Öziş, T.; Yıldırım, A.: A comparative study of he’s homotopy perturbation method for determining frequency--amplitude relation of a nonlinear oscillator with discontinuities. Int. J. Non-linear sci. Numer. simul. 8, No. 2, 243-248 (2007)
[11] Yıldırım, A.; Öziş, T.: Solutions of singular ivps of Lane--Emden type by homotopy perturbation method. Phys. lett. A 369, No. 1--2, 70-76 (2007) · Zbl 1209.65120
[12] Belendez, A.; Hernandez, A.; Belendez, T.; Fernandez, E.; Alvarez, M. L.; Neipp, C.: Application of he’s homotopy perturbation method to the Duffing-harmonic oscillator. Int. J. Non-linear sci. Numer. simul. 8, No. 1, 79-88 (2007)
[13] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Internat. J. Non-linear mech. 34, No. 4, 699-708 (1999) · Zbl 05137891
[14] Marinca, V.: An approximate solution for 1-D weakly nonlinear oscillations. Int. J. Non-linear sci. Numer. simul. 3, 107-120 (2002) · Zbl 1079.34028
[15] Öziş, T.; Yıldırım, A.: A study of nonlinear oscillators with u1/3 force by he’s variational iteration method. J. sound vibration 306, No. 1--2, 372-376 (2007) · Zbl 1242.74214
[16] He, J. H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int. J. Non-linear mech. 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[17] He, J. H.: Modified Lindstedt--Poincaré methods for some strongly nonlinear oscillations:Part II: A new transformation. Int. J. Non-linear mech. 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[18] Öziş, T.; Yıldırım, A.: Determination of periodic solution for a u1/3 force by he’s modified Lindstedt--Poincaré method. J. sound vibration 301, No. 1--2, 415-419 (2007) · Zbl 1242.70044
[19] Öziş, T.; Yıldırım, A.: Determination of limit cycles by modified straightforward expansion for nonlinear oscillators. Chaos solitons fractals 32, No. 2, 445-448 (2007)
[20] Liu, H. M.: Variational approach to nonlinear electrochemical system. Int. J. Non-linear sci. Numer. simul. 5, No. 1, 95-96 (2004)
[21] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos solitons fractals 19, No. 4, 847-851 (2004) · Zbl 1135.35303
[22] Xu, L.: He’s parameter-expanding method for strongly nonlinear oscillators. J. comput. Appl. math. 207, No. 1, 148-154 (2007) · Zbl 1120.65084
[23] Shou, D. H.; He, J. H.: Application of parameter-expanding method to strongly nonlinear oscillators. Int. J. Non-linear sci. Numer. simul 8, No. 1, 121-124 (2007)
[24] Belendez, A.; Hernandez, A.; Belendez, T.; Marquez, A.; Neipp, C.: An improved ’heuristic’ approximation for the period of a nonlinear pendulum: linear analysis of a classical nonlinear problem. J. non-linear sci. Numer. simul 8, No. 3, 329-334 (2007)
[25] A. Belendez, D.I. Mendez, T. Belendez, A. Hernandez, M.L. Alvarez, Harmonic balance approaches to the nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable, J. Sound Vibration (2008), doi:10.1016/j.jsv.2008.01.021
[26] Abdusalam, H. A.: On an improved complex tan h-function method. Int. J. Non-linear sci. Numer. simul. 6, No. 2, 99-106 (2005)
[27] Abbasy, T. A.; El-Tawil, M. A.; Saleh, H. K.: The solution of KdV and mkdv equations using Adomian Padé approximation. Int. J. Non-linear sci. Numer. simul. 5, No. 4, 327-340 (2004)
[28] Geng, L.; Cai, X. C.: He’s frequency formulation for nonlinear oscillators. European J. Phys. 28, No. 5, 923-931 (2007) · Zbl 1162.70019
[29] He, J. H.: Iteration perturbation method for strongly nonlinear oscillators. J. vibration control 7, No. 5, 631-642 (2001) · Zbl 1015.70019
[30] He, J. H.: Limit cycle and bifurcation of nonlinear problems. Chaos solitons fractals 26, 827-833 (2005) · Zbl 1093.34520
[31] El-Latif, G. M. Abd: Parametric excitation for forcing van der Pol oscillator. Appl. math. Comput. 147, 255-265 (2004) · Zbl 1035.34022