zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The existence and the asymptotic behavior of traveling waves solutions for a strongly nonlinear equation. (L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire.) (French) Zbl 1163.35424
Summary: We study the existence and the asymptotic behavior of traveling waves solutions for the equation $U_{t} = A(|U_{x}|^{p-2}U_{x})_{x} + KU^{q}$. We prove that these solutions exist if and only if $q < 1$ and $c < 0$ or $q \leq p-1$ and $c > 0$. We introduce also the asymptotic behavior of these solutions.
MSC:
35K65Parabolic equations of degenerate type
35K55Nonlinear parabolic equations
35B40Asymptotic behavior of solutions of PDE
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] D Arcoya , J. Diaz and L. Tello , S-Shaped biffurcation branch in quasilinear multivalued model arising in climatology , J. Diff Equ. , 150 : 215 - 225 , 1998 MR 1660246 | Zbl 0921.35198 · Zbl 0921.35198 · doi:10.1006/jdeq.1998.3502
[2] A. De Pablo and A. Sanchez , Global Travelling Waves in Reaction- Convection- Diffusion Equations , J.Diff. Eq , 165 : 377 - 413 , 2000 MR 1772566 | Zbl 0961.34011 · Zbl 0961.34011 · doi:10.1006/jdeq.2000.3781
[3] A. De Pablo and J.L. Vazquez , Travelling waves and finite propagation in reaction-Diffusion equation , J.Diff. Eq , 93 : 19 - 61 , 1991 MR 1122305 | Zbl 0784.35045 · Zbl 0784.35045 · doi:10.1016/0022-0396(91)90021-Z
[4] A. C. Fowler , Matematical models in the Applied Sciences , Cambridge texts Applied Mathematics , Cambridge University press , 1997 MR 1483893 | Zbl 0997.00535 · Zbl 0997.00535
[5] K.P. Hadeler , Travelling Front and Free Boundary value problems, Numerical Treatment of Free Boundary Problems , Birkhäuser verlag , 1981 Zbl 0482.35050 · Zbl 0482.35050
[6] H AMANN , Ordinary Differential Equations , Walter de Gruyter , 1996 MR 1071170 | Zbl 0823.34001 · Zbl 0823.34001
[7] M.A. Herrero and J.L. Vazquez , Thermal waves in absorption media , J.Diff.Eq , 74 : 218 - 233 , 1988 MR 952896 | Zbl 0665.35035 · Zbl 0665.35035 · doi:10.1016/0022-0396(88)90003-4
[8] A. Kolmogorov , I. Petrovsky and N. Piskunov , Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique , Bull. Univ. Moskov, ser. Internat.Sec A 1, 6 , 1 - 25 , 1937 Zbl 0018.32106 · Zbl 0018.32106
[9] S.V. Lee and W.F. Ames , Similarity solution for non-Newtonian fluids , A.T.CH.E. Journal , 12 4 : 700 - 708 , 1966 [10] F. Sanchez-Garduno , Travelling Wave Phenomena in Some degenerate Reaction-diffusion Equations , J.Dif. Eq. , 177 : 281 - 319 , 1995 MR 1325800 | Zbl 0821.35085 · Zbl 0821.35085 · doi:10.1006/jdeq.1995.1055
[10] A. Sànchez-Valdés and Hernàndez-Bermejo B. , New travelling wave solutions for the Fisher equation with general exponents , Applied Mathematics Letters , 18 : 1281 - 1285 , 2005 MR 2170884 | Zbl 1082.35512 · Zbl 1082.35512 · doi:10.1016/j.aml.2005.02.016