He, Bin; Rui, Weiguo; Chen, Can; Li, Shaolin Exact travelling wave solutions of a generalized Camassa-Holm equation using the integral bifurcation method. (English) Zbl 1163.35472 Appl. Math. Comput. 206, No. 1, 141-149 (2008). Summary: A generalized Camassa-Holm equation is studied by using the integral bifurcation method. Many travelling waves such as peaked compacton, compacton, peaked solitary wave, solitary wave and kink-like wave are found. In some parameter conditions, exact parametric representations of these travelling waves in explicit form and implicit form are obtained. Cited in 12 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35Q51 Soliton equations 35A30 Geometric theory, characteristics, transformations in context of PDEs Keywords:generalized Camassa-Holm equation; peaked compacton; kink-like wave; compacton; peaked solitary wave PDF BibTeX XML Cite \textit{B. He} et al., Appl. Math. Comput. 206, No. 1, 141--149 (2008; Zbl 1163.35472) Full Text: DOI References: [1] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 [2] Boyd, J. P., Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation, Appl. Math. Comput., 81, 173-187 (1997) · Zbl 0871.35089 [3] Cooper, F.; Shepard, H., Solitons in the Camassa-Holm shallow water equation, Phys. Lett. A, 194, 246-250 (1994) · Zbl 0961.76512 [4] Constantin, A., Soliton interactions for the Camassa-Holm equation, Exposition Math., 15, 251-264 (1997) · Zbl 0879.35121 [5] Dullin, H. R.; Gottwald, G. A.; Holm, D. D., An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87, 194501-1-194501-4 (2001) [6] Degasperis, A.; Holm, D. D.; Hone, A. N.W., A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1463-1474 (2002) [7] Parkes, E. J.; Vakhnenko, V. O., Explicit solutions of the Camassa-Holm equation, Chaos Solitons Fract., 26, 1309-1316 (2005) · Zbl 1072.35156 [8] Qian, T. F.; Tang, M. Y., Peakons and periodic cusp waves in a generalized Camassa-Holm equation, Chaos Solitons Fract., 12, 1347-1360 (2001) · Zbl 1021.35086 [9] Guo, B. L.; Liu, Z. R., Periodic cusp wave solutions and single-solitons for the \(b\)-equation, Chaos Solitons Fract., 23, 1451-1463 (2005) · Zbl 1068.35103 [10] Wazwaz, A. M., New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations, Appl. Math. Comput., 186, 130-141 (2007) · Zbl 1114.65124 [11] Yin, J. L., Painleve integrability, Backlund transformation and solitary solutions’ stability of modified DGH equation, Int. J. Nonlinear Sci., 2, 183-187 (2006) · Zbl 1394.35452 [12] He, B.; Li, J. B.; Long, Y.; Rui, W. G., Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation, Nonlinear Anal.: Real World Appl., 9, 222-232 (2008) · Zbl 1185.35217 [13] Rui, W. G.; He, B.; Long, Y.; Chen, C., The integral bifurcation method and its application for solving a family of third-order dispersive PDEs, Nonlinear Anal., 69, 1256-1267 (2008) · Zbl 1144.35461 [14] Liu, Z. R.; Qian, T. F., Peakons and their bifurcation in a generalized Camassa-Holm equation, Int. J. Bifurcat. Chaos, 11, 781-792 (2001) · Zbl 1090.37554 [15] Tian, L. X.; Song, X. Y., New peaked solitary wave solutions of the generalized Camassa-Holm equation, Chaos Solitons Fract., 19, 621-637 (2004) · Zbl 1068.35123 [16] Shen, J. W.; Xu, W., Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos Solitons Fract., 26, 1149-1162 (2005) · Zbl 1072.35579 [17] Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos Solitons Fract., 31, 943-950 (2007) · Zbl 1143.35341 [18] Chen, C.; Tang, M. Y., A new type of bounded waves for Degasperis-Procesi equation, Chaos Solitons Fract., 27, 698-704 (2006) · Zbl 1082.35044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.