zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extended general variational inequalities. (English) Zbl 1163.49303
Summary: We introduce and consider a new class of general variational inequalities involving three nonlinear operators, which is called the extended general variational inequalities. {\it M. Aslam Noor} [Appl. Math. Lett. 22, No. 2, 182--186 (2009; Zbl 1163.49303)] has shown that the minimum of nonconvex functions can be characterized via these variational inequalities. Using a projection technique, we establish the equivalence between the extended general variational inequalities and the general nonlinear projection equation. This equivalent formulation is used to discuss the existence of a solution of the extended general variational inequalities. Several special cases are also discussed.

49J40Variational methods including variational inequalities
Full Text: DOI
[1] Baiocchi, C.; Capelo, A.: Variational and quasi-variational inequalities, (1984) · Zbl 0551.49007
[2] Cristescu, G.; Lupsa, L.: Non-connected convexities and applications, (2002) · Zbl 1037.52008
[3] Giannessi, F.; Maugeri, A.: Variational inequalities and network equilibrium problems, (1995) · Zbl 0834.00044
[4] Glowinski, R.; Lions, J. L.; Trémolières, R.: Numerical analysis of variational inequalities, (1981)
[5] Jian, Jin-Bao: On (E,F) generalized convexity, Internat. J. Math. 2, 121-132 (2003) · Zbl 1165.90643
[6] Noor, M. Aslam: General variational inequalities, Appl. math. Lett. 1, 119-121 (1988) · Zbl 0655.49005 · doi:10.1016/0893-9659(88)90054-7
[7] Noor, M. Aslam: Wiener--Hopf equations and variational inequalities, J. optim. Theory appl. 79, 197-206 (1993) · Zbl 0799.49010 · doi:10.1007/BF00941894
[8] Noor, M. Aslam: Some recent advances in variational inequalities, part I, basic concepts, New Zealand J. Math. 26, 53-80 (1997) · Zbl 0886.49004
[9] Noor, M. Aslam: Some recent advances in variational inequalities, part II, other concepts, New Zealand J. Math. 26, 229-255 (1997) · Zbl 0889.49006
[10] Noor, M. Aslam: New approximation schemes for general variational inequalities, J. math. Anal. appl. 251, 217-229 (2000) · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[11] Noor, M. Aslam: Some developments in general variational inequalities, Appl. math. Comput. 152, 199-277 (2004) · Zbl 1134.49304 · doi:10.1016/S0096-3003(03)00558-7
[12] Noor, M. Aslam: Differentiable nonconvex functions and general variational inequalities, Appl. math. Comput. 199, 623-630 (2008) · Zbl 1147.65047 · doi:10.1016/j.amc.2007.10.023
[13] Noor, M. Aslam: Auxiliary principle technique for extended general variational inequalities, Banach J. Math. anal. 2, 33-39 (2008) · Zbl 1138.49016 · emis:journals/BJMA/v2n1.html
[14] M. Aslam Noor, Projection iterative methods for extended general variational inequalities, J. Appl. Math. Comput. (2008) (in press) · Zbl 1158.49014
[15] Rapcsak, T.: Smooth nonlinear optimization in rn, (1997)
[16] Youness, E. A.: E-convex sets, E-convex functions and E-convex programming, J. optim. Theory appl. 102, 439-450 (1999) · Zbl 0937.90082 · doi:10.1023/A:1021792726715
[17] Zhao, Y.; Sun, D.: Alternative theorems for nonlinear projection equations and applications to generalized complementarity problems, Nonl. anal. 46, 853-868 (2001) · Zbl 1047.49014 · doi:10.1016/S0362-546X(00)00154-1