zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new hyper-chaotic system and its synchronization. (English) Zbl 1163.65337
Summary: This paper presents a new hyper-chaotic system obtained by adding a nonlinear controller to the third equation of the three-dimensional autonomous Chen-Lee chaotic system. Computer simulations demonstrated the hyper-chaotic dynamic behaviors of the system. Numerical results revealed that the new hyper-chaotic system possesses two positive exponents. It was also found that the structure of the hyper-chaotic attractors is more complex than those of the Chen-Lee chaotic system. Furthermore, the hybrid projective synchronization (HPS) of the new hyper-chaotic systems was studied using a nonlinear feedback control. The nonlinear controller was designed according to Lyapunov’s direct method to guarantee HPS, which includes synchronization, anti-synchronization, and projective synchronization. Numerical examples are presented in order to illustrate HPS.

MSC:
65P20Numerical chaos
WorldCat.org
Full Text: DOI
References:
[1] Perez, G.; Cerdeira, H. A.: Extracting messages masked by chaos. Phys. rev. Lett. 74, 1970-1973 (1995)
[2] Pecora, L.: Hyperchaos harnessed. Phys. world 9, 17 (1996)
[3] Rössler, O. E.: An equation for hyperchaos. Phys. lett. A 71, 155-157 (1979) · Zbl 0996.37502
[4] Matsumoto, T.; Chua, L. O.; Kobayashi, K.: Hyperchaos: laboratory experiment and numerical confirmation. IEEE trans. Circuits syst. 33, 1143-1147 (1986)
[5] Li, Y.; Tang, S. K.; Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurcation chaos. 15, 3367-3375 (2005)
[6] Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. math. Comput. 168, 1239-1250 (2005) · Zbl 1160.93384
[7] Suzuki, T.; Saito, T.: On fundamental bifurcation from a hysteresis hyperchaos generator. IEEE trans. Circuits syst. 41, 876-884 (1994) · Zbl 0868.58073
[8] Elwakil, A. S.; Kennedy, M. P.: Inductorless hyperchaos generator. Microeletr. J. 30, 739-743 (1999)
[9] Thamilmaran, K.; Lakshmanan, M.: Hyperchaos in a modified canonical Chua’s circuit. Int. J. Bifurcation chaos 14, 221-243 (2004) · Zbl 1067.94597
[10] Goedgebuer, J. P.; Larger, L.; Port, H.: Optical cryptosystem based on synchronization of hyper-chaos generated by a delayed feedback laser diode. Phys. rev. Lett. 80, 2249-2254 (1998)
[11] Goedgebuer, J.; Levy, P.; Larger, L.; Chen, C. C.; Rhodes, W. T.: Optical communications with synchronized hyperchaos generated electro-optical. IEEE J. Quantum electr. 38, 1178 (2002)
[12] Udaltsov, V. S.; Goedgebuer, J. P.; Larger, L.; Cuenot, J. B.; Levy, P.; Rhodes, W. T.: Communicating with hyper-chaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. spectra 95, 114-118 (2003) · Zbl 1008.94019
[13] Cafagna, D.; Grassi, G.: New 3D-scroll attractors in hyper-chaotic Chua’s circuits forming a ring. Int. J. Bifurcation chaos 13, 2889-2903 (2003) · Zbl 1057.37026
[14] Li, Y. X.; Chen, G.; Tang, W. K. S.: Controlling a unified chaotic system to hyperchaotic. IEEE trans. Circuits syst. II 52, 204-207 (2005)
[15] Li, Y.; Tang, Wallace K. S.; Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurcation chaos 15, 3367-3375 (2005)
[16] Chen, H. K.; Lee, C. I.: Anti-control of chaos in rigid body motion. Chaos solitons fractals 21, 957-965 (2004) · Zbl 1046.70005
[17] Tam, L. M.; Sitou, W. M.: Parametric study of the fractional order Chen--Lee system. Chaos solitons fractals (2006)
[18] Ge, Z. M.; Yang, C. H.: The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems. Chaos solitons fractals 35, 980-990 (2008) · Zbl 1141.37017
[19] Ge, Z. M.; Lin, G. H.: The complete, lag and anticipated synchronization of a BLDCM chaotic system. Chaos solitons fractals 34, 740-764 (2007)
[20] Ge, Z. M.; Yang, C. H.: Synchronization of complex chaotic systems in series expansion form. Chaos solitons fractals 5, 1649-1658 (2007) · Zbl 1152.37314
[21] Ge, Z. M.; Chen, Y. S.: Synchronization of mutual coupled chaotic systems via partial stability theory. Chaos solitons fractals 34, 787-794 (2007) · Zbl 1134.37329
[22] Ge, Z. M.; Chang, C. M.; Chen, Y. S.: Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems. Chaos solitons fractals 27, 1298-1315 (2006) · Zbl 1091.93554
[23] Ge, Z. M.; Chen, Y. S.: Adaptive synchronization of unidirectional and mutual coupled chaotic systems. Chaos solitons fractals 26, 881-888 (2005) · Zbl 1093.93534
[24] Bu, S. L.; Wang, S. Q.; Ye, H. Q.: An algorithm based on variable feedback to synchronize chaotic and hyperchaotic systems. Physica D 164, 45-52 (2002) · Zbl 1008.37016
[25] Chen, S.; Hu, J.; Wang, C.; Lü, J.: Adaptive synchronization of uncertain Rössler hyperchaotic system based on parameter identification. Phys. lett. A 321, 50-55 (2004) · Zbl 1118.81326
[26] Park, J. H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos solitons fractals 26, 959-964 (2006) · Zbl 1093.93537