zbMATH — the first resource for mathematics

Numerical simulation of gluey particles. (English) Zbl 1163.76056
Summary: We propose a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18, 133–142 (2007)]. We propose a multi-particle version of this gluey model which is based on the projection of velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems, and present numerical results.

76T20 Suspensions
76D08 Lubrication theory
76M28 Particle methods and lattice-gas methods
Full Text: DOI EuDML
[1] Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys.147 (1998) 187-218. · Zbl 0917.76013 · doi:10.1006/jcph.1998.6088
[2] Y. Assou, D. Joyeux, A. Azouni and F. Feuillebois, Mesure par interférométrie laser du mouvement d’une particule proche d’une paroi. J. Phys. III1 (1991) 315-330.
[3] L. Bocquet and J.-L. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E49 (1994) 3079-3092.
[4] J.F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech.20 (1988) 111-157.
[5] D. Bresh and V. Milisic, High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) v2. URIArXiv:math/0611083
[6] R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow1 (1974) 343-371. · Zbl 0358.76069 · doi:10.1016/0301-9322(74)90019-6
[7] R.G. Cox and H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface - II - Small gap width, including inertial effects. Chem. Engng. Sci.22 (1967) 1753-1777.
[8] S.L. Dance and M.R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys.189 (2003) 212-238. · Zbl 1097.76600 · doi:10.1016/S0021-9991(03)00209-2
[9] B. Desjardin and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal.146 (1999) 59-71. · Zbl 0943.35063 · doi:10.1007/s002050050136
[10] A. Einstein, A new method of determining molecular dimensions. Ann. Phys. Leipsig19 (1906) 289-306.
[11] A. Einstein, Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig34 (1911) 591-592.
[12] E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ.3 (2003) 419-441. Zbl1039.76071 · Zbl 1039.76071 · doi:10.1007/s00028-003-0110-1
[13] R. Glowinski, T.-W. Pan, T.I. Heslaand and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow25 (1999) 755-794. Zbl1137.76592 · Zbl 1137.76592 · doi:10.1016/S0301-9322(98)00048-2
[14] M. Hillairet, Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq.32 (2007) 1345-1371. · Zbl 1221.35279 · doi:10.1080/03605300601088740
[15] H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow22 (1996) 335-352. · Zbl 1135.76442 · doi:10.1016/0301-9322(95)00068-2
[16] A.A. Johnson and T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg.134 (1996) 351-373. · Zbl 0895.76046 · doi:10.1016/0045-7825(95)00988-4
[17] S. Labbé, J. Laminie and V. Louvet, CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l’analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004).
[18] N. Lecocq, F. Feuillebois, N. Anthore, R. Anthore, F. Bostel and C. Petipas, Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A5 (1993) 3-12.
[19] N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech.513 (2004) 247-264. Zbl1107.76319 · Zbl 1107.76319 · doi:10.1017/S0022112004009942
[20] A. Lefebvre, Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120-132. · Zbl 1354.76109
[21] A. Lefebvre, Simulation numérique d’écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007).
[22] B. Maury, A many-body lubrication model. C.R. Acad. Sci. Paris325 (1997) 1053-1058. · Zbl 0898.76019 · doi:10.1016/S0764-4442(97)89104-5
[23] B. Maury, Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys.156 (1999) 325-351. · Zbl 0958.76045 · doi:10.1006/jcph.1999.6365
[24] B. Maury, A time-stepping scheme for inelastic collisions. Numer. Math.102 (2006) 649-679. · Zbl 1091.70002
[25] B. Maury, A gluey particle model, in ESAIM: Proceedings18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133-142. · Zbl 1359.76112
[26] S. Nasseri, N. Phan-Thien and X.J. Fan, Lubrication approximation in completed double layer boundary element method. Comput. Mech.26 (2000) 388-397. Zbl0994.76061 · Zbl 0994.76061 · doi:10.1007/s004660000188
[27] N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow26 (2000) 1509-1524. Zbl1137.76712 · Zbl 1137.76712 · doi:10.1016/S0301-9322(99)00100-7
[28] S. Richardson, A model for the boundary condition of a porous material. Part 2. J. Fluid Mech.49 (1971) 327-336. · Zbl 0235.76045 · doi:10.1017/S002211207100209X
[29] J.A. San Matín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal.161 (2002) 113-147. · Zbl 1018.76012 · doi:10.1007/s002050100172
[30] P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow29 (2003) 495-509. Zbl1136.76643 · Zbl 1136.76643 · doi:10.1016/S0301-9322(02)00164-7
[31] J.R. Smart and D.T. Leighton, Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A1 (1989) 52.
[32] D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev.42 (2000) 3-39. · Zbl 0962.70010 · doi:10.1137/S0036144599360110
[33] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations8 (2003) 1499-1532. Zbl1101.35356 · Zbl 1101.35356
[34] T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris336 (2003) 453-458. Zbl1044.35062 · Zbl 1044.35062 · doi:10.1016/S1631-073X(03)00081-5
[35] G.I. Taylor, A model for the boundary condition of a porous material. Part 1. J. Fluid Mech.49 (1971) 319-326. · Zbl 0254.76093 · doi:10.1017/S0022112071002088
[36] O.I. Vinogradova and G.E. Yacubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E73 (2006) 045302(R).
[37] D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids51 (2006) 531-566. · Zbl 1145.76406 · doi:10.1002/fld.1129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.