zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reliability based assignment in stochastic-flow freight network. (English) Zbl 1163.90003
Summary: Based on the reliability of transportation time, a transportation assignment model of stochastic-flow freight network is designed in this paper. This transportation assignment model is built by mean of stochastic chance-constraint programming and solved with a hybrid intelligent algorithm (HIA) which integrates genetic algorithm (GA), stochastic simulation (SS) and neural network (NN). GA is employed to report the optimal solution as well as the optimal objective function values of the proposed model. SS is used to simulate the value of uncertain system reliability function. The uncertain function approximated via NN is embedded into GA to check the feasibility and to compute the fitness of the chromosomes. These conclusions have been drawn after a test of numerical case using the proposed formulations. System reliability, total system cost and flow on each path would finally reach at their own convergence points. Increase of the system reliability causes increase of the total time cost. The system reliability and the total time cost converge at a possible Nash Equilibrium point.

90B25Reliability, availability, maintenance, inspection, etc. (optimization)
90B15Network models, stochastic (optimization)
Full Text: DOI
[1] Sheffi, Y.: Urban transportation network: equilibrium analysis with mathematical programming methods, (1984) · Zbl 0529.90063
[2] Bielli, M.; Boulmakoul, A.; Mouncif, H.: Object modeling and path computation for multimodal travel systems, Eur. J. Oper. res. 17, 1705-1730 (2006) · Zbl 1142.90367 · doi:10.1016/j.ejor.2005.02.036
[3] Chen, Y. L.; Chin, Y. H.: The quickest path problem, Comput. oper. Res. 17, 153-161 (1990) · Zbl 0698.90083 · doi:10.1016/0305-0548(90)90039-A
[4] Martins, E. D. Q.V.; Santos, J. L. E.D.: An algorithm for the quick path problem, Oper. res. Lett. 20, 195-198 (1997) · Zbl 0881.90124
[5] Chen, G. H.; Huang, Y. C.: Algorithms for the constrained quickest path problem and the enumeration of quickest paths, Comput. oper. Res. 21, 113-118 (1994) · Zbl 0795.90079 · doi:10.1016/0305-0548(94)90045-0
[6] Hung, Y. C.; Chen, G. H.: Distributed algorithms for the quickest path problem, Parallel comput. 18, 823-834 (1992) · Zbl 0754.68057 · doi:10.1016/0167-8191(92)90048-C
[7] Lin, J. S.; Jane, C. C.; Yuan, J.: On reliability evaluation of a capacitated-flow network in terms of minimal pathsets, Network 25, 131-138 (1995) · Zbl 0828.90038 · doi:10.1002/net.3230250306
[8] Rosen, J. B.; Sun, S. Z.; Xue, G. L.: Algorithms for the quickest path problem and the enumeration of quickest paths, Comput. oper. Res. 18, 579-584 (1991) · Zbl 0747.90104 · doi:10.1016/0305-0548(91)90063-W
[9] Chen, Y. L.: Finding the k quickest simples paths in a network, Inform. process. Lett. 50, 89-92 (1994) · Zbl 0804.90129 · doi:10.1016/0020-0190(94)00008-5
[10] Lee, D. T.; Papadopoulou, E.: The all-pairs quickest path problem, Inform. process. Lett. 45, 261-267 (1993) · Zbl 0768.68049 · doi:10.1016/0020-0190(93)90214-T
[11] Lin, Y. K.: A simple algorithm for reliability evaluation of a stochastic-flow network with node failure, Comput. oper. Res. 28, 1277-1285 (2001) · Zbl 0989.90015 · doi:10.1016/S0305-0548(00)00039-3
[12] Lin, Y. K.: Reliability of a stochastic-flow network with unreliable branches & nodes under budget constraints, IEEE trans. Reliab. 53, 381-387 (2004)
[13] Alexopoulos, C.: Note on state-space decomposition methods for analyzing stochastic flow networks, IEEE trans. Reliab. 44, 354-357 (1995)
[14] Lin, Y. K.: Study on the multicommodity reliability of a capacitated-flow network, Comput. math. Appl. 42, 255-264 (2001) · Zbl 0981.90014 · doi:10.1016/S0898-1221(01)00149-3
[15] Locks, M. O.: Recent development in computing of system reliability, IEEE trans. Reliab. 34, 425-436 (1985) · Zbl 0584.90032 · doi:10.1109/TR.1985.5222224
[16] Carlier, J.; Li, Y.; Jean; Luttonb, L.: Reliability evaluation of large telecommunication networks, Disc. appl. Math. 76, 61-80 (1997) · Zbl 0882.90041 · doi:10.1016/S0166-218X(96)00117-5 · http://www.elsevier.com/locate/dam
[17] Y.K. Lin, Two-commodity reliability evaluation of a stochastic-flow network with varying capacity weight in terms of minimal paths. Comput. Oper. Res., in press. Available online 14 December 2007.
[18] Chen, H.; Zhou, J.: Reliability optimization in generalized stochastic-flow networks, IEEE trans. Reliab. 40, 92-97 (1991) · Zbl 0739.90017 · doi:10.1109/24.75342
[19] Hsieh, C. C.; Lin, M. H.: Reliability-oriented multi-resource allocation in a stochastic-flow network, Reliab. eng. Syst. safe. 81, 155-161 (2003)
[20] Doulliez, P.; Jamoulle, E.: Transportation networks with random arc capacities, Oper. res. 3, 45-60 (1972) · Zbl 0249.90025
[21] Y.K. Lin, Optimal routing policy of a stochastic-flow network. Comput. Indust. Eng. (2008), doi:10.1016/j.cie.2008.09.002.
[22] Sun, G.; Cassandras, C. G.; Wardi, Y.; Panayiotou, C. G.; Riley, G. F.: Perturbation analysis and optimization of stochastic flow networks, IEEE trans. Automat. contr. 49, 2143-2159 (2004)
[23] Zhou, Y.; Meng, Q.: Improving efficiency of solving d-MC problem in stochastic-flow network, Reliab. eng. Syst. safe. 83, No. 1, 47-55 (2004)
[24] Beyer, H. G.; Sendhoff, B.: Robust optimization --- a comprehensive survey, Comput. meth. Appl. mech. Eng. 196, 3190-3218 (2007) · Zbl 1173.74376 · doi:10.1016/j.cma.2007.03.003
[25] Barbarosogcaronlu, G.; Arda, Y.: A two-stage stochastic programming framework for transportation planning in disaster response, J. oper. Res. soc. 55, 43-53 (2004) · Zbl 1095.90586 · doi:10.1057/palgrave.jors.2601652
[26] Charnes, A.; Cooper, W. W.: Chance-constrained programming, Manage. sci. 6, 73-79 (1959) · Zbl 0995.90600 · doi:10.1287/mnsc.6.1.73
[27] Liu, B.: Theory and practice of uncertain programming, (2002) · Zbl 1029.90084
[28] Liu, B.: Uncertainty theory: an introduction to its axiomatic foundations, (2004) · Zbl 1072.28012
[29] Xia, Y.; Liu, B.; Wang, Sh.; Lai, K. K.: A model for portfolio selection with order of expected returns, Comput. oper. Res. 27, 409-422 (2000) · Zbl 1063.91519 · doi:10.1016/S0305-0548(99)00059-3
[30] Ke, H.; Liu, B.: Project scheduling problem with stochastic activity duration times, Appl. math. Comput. 168, 342-353 (2005) · Zbl 1076.94044 · doi:10.1016/j.amc.2004.09.002