zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust improvement schemes for road networks under demand uncertainty. (English) Zbl 1163.90378
Summary: This paper is concerned with development of improvement schemes for road networks under future travel demand uncertainty. Three optimization models, sensitivity-based, scenario-based and min-max, are proposed for determining robust optimal improvement schemes that make system performance insensitive to realizations of uncertain demands or allow the system to perform better against the worst-case demand scenario. Numerical examples and simulation tests are presented to demonstrate and validate the proposed models.

90B06Transportation, logistics
Full Text: DOI
[1] Ben-Tal, A.; Nemirovski, A.: Robust optimization -- methodology and applications, Mathematical programming, series B 92, 380-453 (2002) · Zbl 1007.90047 · doi:10.1007/s101070100286
[2] Borcherds, P. H.: Importance sampling: an illustrative introduction, European journal of physics 21, 405-411 (2000)
[3] Cantarella, G. E.: A general fixed-point approach to multimode multi-user equilibrium assignment with elastic demand, Transportation science 31, No. 2, 107-128 (1997) · Zbl 0886.90071 · doi:10.1287/trsc.31.2.107
[4] Cascetta, E.; Nuzzolo, A.; Russo, F.; Vitetta, A.: A modified logit route choice model overcoming path overlapping problems: specification and some calibration results for interurban networks, Proceedings of 13th international symposium on transportation and traffic theory, 697-711 (1996)
[5] Chen, A.; Yang, H.; Lo, H. K.; Tang, W. H.: Capacity reliability of a road network: an assessment methodology and numerical results, Transportation research 36B, 225-252 (2002)
[6] Chen, A.; Subprasom, K.; Ji, Z.: Mean-variance model for the build-operate-transfer scheme under demand uncertainty, Transportation research record 1857, 93-101 (2003)
[7] Chen, A.; Kim, J.; Zhou, Z.; Chootinan, P.: An alpha reliable network design problem, Transportation research record 2029, 49-57 (2007)
[8] Chen, Y., Ordonez, F., Palmer, K. 2006. Confidence Intervals for OD Demand Estimation. USC-ISE Working Paper #2006-01, University of Southern California.
[9] Chootinan, P.; Wong, S. C.; Chen, A.: A reliability-based network design problem, Journal of advanced transportation 39, 247-270 (2005)
[10] Clark, S.; Watling, D.: Modeling network travel time reliability under stochastic demand, Transportation research 39B, 119-140 (2005)
[11] Daganzo, C. F.: Stochastic network equilibrium with multiple vehicle types and asymmetric, indefinite link cost Jacobians, Transportation science 17, No. 3, 282-300 (1983)
[12] Davis, G. A.: Exact local solution of the continuous network design problem via stochastic user equilibrium assignment, Transportation research 28B, 61-75 (1994)
[13] El Ghaoui, L., 2003. A Tutorial on Robust Optimization, Presentation at the Institute of Mathematics and Its Applications, March 11, 2003. <http://robotics.eecs.berkeley.edu/ elghaoui/>.
[14] Federal Highway Administration 2003. Status of the Nation’s Highways, Bridges, and Transit:2002 Conditions and Performance Report -- Chapter 10: Sensitivity Analysis.
[15] Fisk, C.: More paradoxes in the equilibrium assignment problem, Transportation research 13B, 305-309 (1979)
[16] Fowlkes, W. Y.; Creveling, C. M.: Engineering methods for robust product design: using Taguchi methods in technology and product development, (1995)
[17] Koppelman, F. S.; Wen, C. H.: The paired combinatorial logit model: properties, estimation and application, Transportation research 34B, 75-89 (2000)
[18] Kouvelis, P.; Yu, G.: Robust discrete optimization and its applications, (1997) · Zbl 0873.90071
[19] Laguna, M.: Applying robust optimization to capacity expansion of one location in telecommunications with demand uncertainty, Management science 44, No. 11, 101-110 (1998) · Zbl 0989.90017 · doi:10.1287/mnsc.44.11.S101
[20] Linderoth, J., Shapiro, A., Wright, S. 2004. The Empirical Behavior of Sampling Methods for Stochastic Programming. Optimization Technical Report 02-01, Computer Sciences Department, University of Wisconsin-Madison. · Zbl 1122.90391
[21] List, G. F.; Wood, B.; Nozick, L. K.; Turnquist, M. A.; Jones, D. A.; Kjeldgaard, E. A.; Lawton, C. R.: Robust optimization for fleet planning under uncertainty, Transportation research 39E, 209-227 (2003)
[22] Lo, H. K.; Tung, Y. K.: Network with degradable links: capacity analysis and design, Transportation research part B 31, No. 4, 345-363 (2003)
[23] Lou, Y., Yin, Y., Lawphongpanich, S., 2008. A Robust Approach for Discrete Network Design under Demand Uncertainty. In: 88th Transportation Research Board Meeting, #09-2138.
[24] Luo, Z. Q.; Pang, J. S.; Ralph, D.: Mathematical programs with equilibrium constraints, (1996) · Zbl 0870.90092
[25] Meng, Q.; Lee, D. H.; Yang, H.; Huang, H. J.: Transportation network optimization problems with stochastic user equilibrium constraints, Transportation research record 1882, 113-119 (2004)
[26] Mulvey, J. M.; Vanderbei, R. J.; Zenios, S. A.: Robust optimization of large-scale systems, Operations research 43, No. 2, 264-281 (1995) · Zbl 0832.90084 · doi:10.1287/opre.43.2.264
[27] Nguyen, S.; Dupuis, C.: An efficient method for computing traffic equilibria in networks with asymmetric transportation costs, Transportation science 18, 185-202 (1984)
[28] Ordonez, F.; Zhao, J.: Robust capacity expansion of network flows, Networks 50, No. 2, 136-145 (2007) · Zbl 1144.90325 · doi:10.1002/net.20183
[29] Park, G. -J.; Lee, T. -H.; Lee, K. H.; Hwang, K. -H.: Robust design: an overview, AIAA journal 44, 181-191 (2006)
[30] Prashker, J. N.; Bekhor, S.: Investigation of stochastic network loading procedures, Transportation research record 1645, 94-102 (1998)
[31] Sumalee, A.; Watling, D. P.; Nakayama, S.: Reliable network design problem: the case with uncertain demand and total travel time reliability, Transportation research record 1964, 81-90 (2006)
[32] Waller, S. T.; Schofer, J. L.; Ziliaskopoulos, A. K.: Evaluation with traffic assignment under demand uncertainty, Transportation research record 1771, 69-74 (2001)
[33] Waller, S. T.; Ziliaskopoulos, A. K.: Stochastic dynamic network design problem, Transportation research record 1771, 106-113 (2001)
[34] Yang, H.; Bell, M. G. H.: Models and algorithms for road network design: A review and some new developments, Transport review 18, No. 3, 257-278 (1998)
[35] Yang, H.; Yagar, S.; Iida, Y.; Asakura, Y.: An algorithm for the inflow control problem on urban freeway networks with user-optimal flows, Transportation research 28B, 123-139 (1994)
[36] Yin, Y.: Genetic-algorithm-based approach for bi-level programming models, Journal of transportation engineering, ASCE 126, No. 2, 115-120 (2000)
[37] Yin, Y.; Ieda, H.: Optimal improvement scheme for network reliability, Transportation research record 1783, 1-6 (2002)
[38] Yin, Y.; Lawphongpanich, S.: A robust approach to continuous network design problems with demand uncertainty, Proceedings of 17th international symposium on transportation and traffic theory, 111-126 (2007)
[39] Yin, Y.; Lawphongpanich, S.; Lou, Y.: Robust estimation of investment requirement for highway system maintenance and improvement, Transportation research, part C 16, 199-211 (2008)
[40] Ying, J. Q.; Miyagi, T.: Sensitivity analysis for stochastic user equilibrium network flows -- A dual approach, Transportation science 35, 124-133 (2001) · Zbl 1069.90510 · doi:10.1287/trsc.
[41] Zang, C.; Friswell, M. I.; Mottershead, J. E.: A review of robust optimal design and its application in dynamics, Computers and structures 83, 315-326 (2005)
[42] Zhao, Y.; Kockelman, K.: The propagation of uncertainty through travel demand models: an exploratory analysis, Annals of regional science 36, 145-163 (2002)