zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays. (English) Zbl 1163.92307
Summary: A class of Cohen-Grossberg neural networks with time-varying delays is considered. Without assuming boundedness and monotonicity of the activation functions, we establish new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium points for such delayed Cohen-Grossberg neural networks. Numerical examples are provided to show that the proposed criteria are less conservative than some results in the literature.

MSC:
92B20General theory of neural networks (mathematical biology)
34K20Stability theory of functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Arik, S.; Orman, Z.: Global stability analysis of Cohen--Grossberg neural networks with time varying delays. Phys. lett. A 341, 410-421 (2005) · Zbl 1171.37337
[2] Cao, J.; Li, X.: Stability in delayed Cohen--Grossberg neural networks: LMI optimization approach. Physica D 212, 54-65 (2005) · Zbl 1097.34053
[3] Cao, J.; Liang, J.: Boundedness and stability for Cohen--Grossberg neural networks with time-varying delays. J. math. Anal. appl. 296, 665-685 (2004) · Zbl 1044.92001
[4] Cao, J.; Zhong, S.; Hu, Y.: Global stability analysis for a class of neural networks with varying delays and control input. Appl. math. Comput. 189, 1480-1490 (2007) · Zbl 1128.34046
[5] Chen, Y.: Global asymptotic stability of delayed Cohen--Grossberg neural networks. IEEE trans. Circuits syst. I 53, 351-357 (2006)
[6] Chen, T.; Rong, L.: Delay-independent stability analysis of Cohen--Grossberg neural networks. Phys. lett. A 317, 436-449 (2003) · Zbl 1030.92002
[7] Cohen, M.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. Man cybernet. 13, 815-826 (1983) · Zbl 0553.92009
[8] Forti, M.; Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems. IEEE trans. Circuits syst. I 42, No. 7, 354-366 (1995) · Zbl 0849.68105
[9] Hale, J.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[10] Huang, C.; Huang, L.: Dynamics of a class of Cohen--Grossberg neural networks with time-varying delays. Nonlinear anal. RWA 8, 40-52 (2007) · Zbl 1123.34053
[11] Jiang, H.; Cao, J.; Teng, Z.: Dynamics of Cohen--Grossberg neural networks with time-varying delays. Phys. lett. A 354, No. 5--6, 414-422 (2006)
[12] Liu, J.: Global exponential stability of Cohen--Grossberg neural networks with time-varying delays. Chaos solitons fractals 26, 935-945 (2005) · Zbl 1138.34349
[13] Tan, M. C.: Asymptotic stability of nonlinear systems with unbounded delays. J. math. Anal. appl. 337, 1010-1021 (2008) · Zbl 1136.93035
[14] Tu, F.; Liao, X.: Harmless delays for global asymptotic stability of Cohen--Grossberg neural networks. Chaos solitons fractals 26, 927-933 (2005) · Zbl 1088.34064
[15] Wang, L.; Zou, X.: Harmless delays in Cohen--Grossberg neural networks. Physica D 170, 162-173 (2002) · Zbl 1025.92002
[16] Wu, W.; Cui, B. T.; Huang, M.: Global asymptotic stability of delayed Cohen--Grossberg neural networks. Chaos solitons fractals 34, 872-877 (2007) · Zbl 1154.34388
[17] Ye, H.; Michel, A. N.; Wang, K.: Qualitative analysis of Cohen--Grossberg neural networks with multiple delays. Phys. rev. E 51, 2611-2618 (1995)
[18] Zhang, Q.; Wei, X.; Xu, J.: Delay-dependent global stability condition for delayed Hopfield neural networks. Nonlinear anal. RWA 8, 997-1002 (2007) · Zbl 1138.34036