zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-time stability and stabilization of nonlinear stochastic hybrid systems. (English) Zbl 1163.93033
Summary: This paper deals with the problem of finite-time stability and stabilization of nonlinear Markovian switching stochastic systems which have impulses at the switching instants. Using multiple Lyapunov function theory, a sufficient condition is established for finite-time stability of the underlying systems. Furthermore, based on the state partition of continuous parts of systems, a feedback controller is designed such that the corresponding impulsive stochastic closed-loop systems are finite-time stochastically stable. A numerical example is presented to illustrate the effectiveness of the proposed method.

93E03General theory of stochastic systems
93E15Stochastic stability
60J75Jump processes
Full Text: DOI
[1] Kushner, H. I.; Dupuis, P.: Numerical methods for stochastic control problems in continuous time, (2001) · Zbl 0968.93005
[2] Hespanha, J. P.: A model for stochastic hybrid systems with application to communication networks, Nonlinear anal. 62, 1353-1383 (2005) · Zbl 1131.90322 · doi:10.1016/j.na.2005.01.112
[3] Ji, Y.; Chizeck, H. J.: Controllability, stability and continuous-time Markovian jump linear quadratic control, IEEE trans. Automat. control 35, 777-788 (1990) · Zbl 0714.93060 · doi:10.1109/9.57016
[4] Mao, X.: Stability of stochastic differential equations with Markovian switching, Stochastic process. Appl. 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[5] Hu, L.; Shi, P.; Huang, B.: Stochastic stability and robust control for sampled-data systems with Markovian jump parameters, J. math. Anal. appl. 313, 504-517 (2006) · Zbl 1211.93131 · doi:10.1016/j.jmaa.2005.08.019
[6] Dragan, V.; Morozan, T.: Stability and robust stabilization to linear stochastic systems described by differential equations with Markovian jumping and multiplicative white noise, Stochastic process. Appl. 20, 33-92 (2002) · Zbl 1136.60335 · doi:10.1081/SAP-120002421
[7] Ye, H.; Michel, A. N.; Hou, L.: Stability analysis of systems with impulse effect, IEEE trans. Automat. control 43, 1719-1723 (1998) · Zbl 0957.34051 · doi:10.1109/9.736069
[8] Xie, G.; Wang, L.: Necessary and sufficient conditions for controllability and observability of switched impulsive control systems, IEEE trans. Automat. control 49, 960-966 (2004)
[9] Guan, Z. H.; Hill, D. J.; Shen, X.: On hybrid impulsive and switching systems and application to nonlinear control, IEEE trans. Automat. control 50, 1058-1062 (2005)
[10] Li, Z. G.; Wen, C. Y.; Soh, Y. C.: Analysis and design of impulsive control systems, IEEE trans. Automat. control 46, 894-897 (2001) · Zbl 1001.93068 · doi:10.1109/9.928590
[11] Dorato, P.: Short time stability in linear time-varying systems, , 83-87 (1961)
[12] Weiss, L.; Infante, E. F.: Finite time stability under perturbing forces and on product spaces, IEEE trans. Automat. control 12, 54-59 (1967) · Zbl 0168.33903
[13] Angelo, H. D.: Linear time-varying systems: analysis and synthesis, (1970) · Zbl 0202.08502
[14] Amato, F.; Ariola, M.; Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica 37, 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[15] Amato, F.; Ariola, M.: Finite-time control of discrete-time linear systems, IEEE trans. Automat. control 50, 724-729 (2005)
[16] Hong, Y. G.; Wang, J. K.: Nonsmooth finite-time stabilization of a class of nonlinear systems, Sci. China ser. E 35, 663-672 (2005)
[17] Huang, X. Q.; Lin, W.; Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica 41, 881-888 (2005) · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036
[18] Kushner, H. J.: Finite-time stochastic stability and the analysis of tracking systems, IEEE trans. Automat. control 11, 219-227 (1966)
[19] Mastellone, S.; Dorato, P.; Abdallah, C. T.: Finite-time stability of discrete-time nonlinear systems: analysis and design, , 2572-2577 (2004)
[20] Van Mellaert, L. J.; Dorato, P.: Numerical solution of an optimal control problem with a probability criterion, IEEE trans. Automat. control 17, 543-546 (1972) · Zbl 0263.93068 · doi:10.1109/TAC.1972.1100039
[21] Rami, M. A.; Chen, X.; Moore, J. B.; Zhou, X. Y.: Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls, IEEE trans. Automat. control 46, 428-440 (2001) · Zbl 0992.93097 · doi:10.1109/9.911419
[22] Skorohod, A. V.: Symptotic methods in the theory of stochastic differential equations, (2004)