zbMATH — the first resource for mathematics

Recurrent nonparametric estimation of functions from functionals of multidimensional density and their derivatives. (English. Russian original) Zbl 1163.93391
Autom. Remote Control 70, No. 3, 389-407 (2009); translation from Avtom. Telemekh. 2009, No. 3, 48-67 (2009).
Summary: Recurrent kernel estimates of functions are considered, which depend on functionals of the multidimensional distribution density and their derivatives, and also their piecewise smooth approximations. The principal part of a mean square error of estimates is found. The suggested approach enables estimating from unique positions, for example, the production function and its characteristics. The comparison is performed of recurrent and common estimates both in asymptotics and at finite volumes of samples.

93E10 Estimation and detection in stochastic control theory
Full Text: DOI
[1] Kendall, M.G. and Stuart, J., Statisticheskie vyvody i svyazi (Statistical Conclusions and Connections), Moscow: Nauka, 1973.
[2] Rao, S.R., Lineinye statisticheskie metody i ikh primeneniya (Linear Statistical Methods and Their Applications), Moscow: Nauka, 1968.
[3] Dobrovidov, A.V. and Koshkin, G.M., Neparametricheskoe otsenivanie signalov (Nonparameteric Estimation of Signals), Moscow: Nauka, 1997. · Zbl 0886.62040
[4] Koshkin, G.M. and Fuks, I.L., Allication of Nonparametric Estimation of the Sensitivity Function in Identification of Stochastic Processes, Tez. Dokl. V Vses. sov. po statist. metodam v protsessakh upravleniya, Moscow: Nauka, 1981, pp. 235–237.
[5] Pashchenko, F.F., Sensitivity Function and Its Application in Choice of the Optimal Model, in Sistemy Upravleniya (Control Systems), Moscow: Nauka, 1973, pp. 72–78.
[6] Kleiner, G.B., Proizvodstvennye funktsii: teoriya, metody, primenenie (Production Functions: Theory, Methods, Application), Moscow: Finansy, 1986. · Zbl 0685.90015
[7] Kleiner, G.B. and Sirota, B.N., On Production Functions with Constant and Variable Elasticities of Replacement of Factors, Ekon. Mat. Metody, 1975, vol. 11,issue 3, pp. 475–482.
[8] Koshkin, G.M. and Vasil’iev, V.A., Nonparametric Estimation of Derivatives of a Multivariate Density from Dependent Observations, Math. Methods Statist., 1998, vol. 7, no. 4, pp. 361–400. · Zbl 1103.62336
[9] Vasil’ev, V.A. and Koshkin, G.M., Nonparametric Estimation of Relations of Derivatives for Multidimensional Distribution Density by Dependent Observations, Sib. Mat. Zh., 2000, vol. 41, no. 2, pp. 280–298.
[10] Dobrovidov, A.V. and Koshkin, G.M., Nonparametric Estimation of the Logarithmic Derivative of Density for Sequencies with High Intermixing, Avtom. Telemekh., 2001, no. 9, pp. 63–88.
[11] Dobrovidov, A.V., On Convergence Rate of Nonparametric Filtration Estimates in Dynamic Systems of Autoregressive Type, Avtom. Telemekh., 2003, no. 1, pp. 56–73.
[12] Vasil’ev, V.A., Dobrovidov, A.V., and Koshkin, G.M., Neparametricheskoe otsenivanie funktsionalov ot raspredelenii statsionarnykh posledovatel’nostei (Nonparameteric Estimation of Functionals from Distributions of Stationary Sequencies), Moscow: Nauka, 2004.
[13] Wolverton, C.T. and Wagner, T.J., Asymptotically Optimal Discriminant Functions for Pattern Classification, IEEE Trans. Inform. Theory, 1969, vol. IT-15, no. 2, pp. 258–266. · Zbl 0172.43404 · doi:10.1109/TIT.1969.1054295
[14] Wolverton, C.T. and Wagner, T.J., Recursive Estimates of Probability Densities, IEEE Trans. Syst. Sci. Cybernet., 1969, vol. SSC-5, no. 3, pp. 246–247. · Zbl 0184.22302 · doi:10.1109/TSSC.1969.300267
[15] Yamato, H., Sequential Estimation of a Continuous Probability Density Function and Mode, Bull. Math. Statist., 1973, vol. 14, no. 1–2, pp. 1–12. · Zbl 0259.62034
[16] Banon, G., Sur un estimateur non parametrique de la densite de probabilite, Rev. Statist. Appl., 1976, vol. 24, no. 4, pp. 61–73.
[17] Borovkov, A.A., Matematicheskaya statistika (Mathematic Statistic), Novosibirsk: Nauka, 1997.
[18] Nadaraya, E.A., On Regression Estimation, Teor. Veroyatn. Primen., 1964, vol. 19,issue 1, pp. 147–149.
[19] Watson, G.S., Smooth Regression Analysis, Sankhya. Indian J. Statist., 1964, vol. A26, pp. 359–372. · Zbl 0137.13002
[20] Walk, H., Strong Universal Pointwise Consistency of Recursive Kernel Regression Estimates, Ann. Inst. Statist. Math., 2001, vol. 53, no. 4, pp. 691–707. · Zbl 1135.62328 · doi:10.1023/A:1014692616736
[21] Ahmad, J.A. and Lin, P.E., Nonparametric Sequential Estimation of a Multiple Regression Function, Bull. Math. Statist., 1976, vol. 17, no. 1–2, pp. 63–75. · Zbl 0372.62026
[22] Buldakov, V.M. and Koshkin, G.M., On recurrent Estimates of the Probability Density and Regression Line, Probl. Peredachi Inf., 1977, vol. 13, pp. 41–48.
[23] Devroye, L. and Wagner, T.J., On the L 1 Convergence of Kernel Estimates of Regression Functions with Applications in Discrimination, Z. Wahrsch. Verw. Gebiete, 1980, vol. 51, pp. 15–25. · Zbl 0396.62044 · doi:10.1007/BF00533813
[24] Krzyźak, A. and Pawlak, M., Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification, IEEE Trans. Inform. Theory, 1984, vol. IT-30, pp. 91–93. · Zbl 0534.62023 · doi:10.1109/TIT.1984.1056833
[25] Grebiicki, W. and Pawlak, M., Necessary and Sufficient Consistency Conditions for Recursive Kernel Regression Estimate, J. Multivariate Anal., 1987, vol. 23, pp. 67–76. · Zbl 0627.62040 · doi:10.1016/0047-259X(87)90178-3
[26] Krzyźak, A., Global Convergence of the Recursive Kernel Estimates with Applications in Classification and Nonlinear System Estimation, IEEE Trans. Inform. Theory, 1992, vol. IT-38, pp. 1323–1338. · Zbl 0754.62022 · doi:10.1109/18.144711
[27] Wang, L. and Liang, H.-Y., Strong Uniform Convergence of the Recursive Regression Estimator under \(\phi\)-Mixing Conditions, Metrika, 2004, vol. 59, pp. 245–261. · Zbl 1147.62330 · doi:10.1007/s001840300282
[28] Gasser, T., and Müller, H.-G., Kernel Estimation of Regression Functions, Lecture Notes Math., 1979, vol. 757, pp. 23–68. · doi:10.1007/BFb0098489
[29] Fihtengolz, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya (Course of Differential and Integral Calculas), Moscow: Nauka, 1966, vol. 2.
[30] Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, sum, ryadov i proizvedenii (Tables of Integrals, Sums, Series, and Products), Moscow: Nauka, 1971.
[31] Koshkin, G.M., Moments of Deviations of Substitution Estimate and Its Piecewise Smooth Approximations, Sib. Mat. Zh., 1999, vol. 40, no. 3, pp. 605–618. · Zbl 0930.62058 · doi:10.1007/BF02679759
[32] Cramer, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946. Translated under the title Matematicheskie metody statistiki, Moscow: Mir, 1975.
[33] Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of Theory of Functions and Functional Analysis) Moscow: Nauka, 1972.
[34] Nadaraya, E.A., Neparametricheskoe otsenivanie plotnosti veroyatnostei i krivoi regressii (Nonpametric Estimation of Probability Density and Regression Curve), Tbilisi: Tbil. Univ., 1983. · Zbl 0579.62028
[35] Nadaraya, E.A., Nonparametric Estimates of Regession Curve, in Tr. Vychisl. Tsentr. Akad. Nauk GSSR, Tbilisi: Metsnieraba, 1965, no. 5:1, pp. 56–68. · Zbl 0229.62021
[36] Collomb, G., Estimation non parametrique de la regression par la methode du noyau, Toulouse: Univ. Paul-Sabatier, 1976.
[37] Aprausheva, N.N. and Konakov, V.D., Use of Nonparametric Estimates in Regressive Analysis, Zavod. Lab., 1973, no. 5, pp. 556–569.
[38] Kleiner, B.G. and Nikolaeva, N.L., Estimation of Parameters of Imitative Economic-Statistical Models with Consideration for Prior Qualitatve Inforllmation, Ekon. Mat. Methody, 1986, vol. 22,issue 4, pp. 714–721.
[39] Dmitriev, Yu.G. and Koshkin, G.M., Use of Additional Information in Nonparametric Estimation of Density Functionals, Avtom. Telemekh., 1987, no. 19, pp. 47–59. · Zbl 0644.62040
[40] Ermakov, S.M. and Zhiglyavskii, A.A., Matematicheskaya teoriya optimal’nogo eksperimenta (Mathematical Theory of an Optimal Experiment), Moscow: Nauka, 1987.
[41] Golovchenko, V.B., Prognozirovanie vremennykh ryadov po raznorodnoi informatsii (Prediction of Time Series by Heterogeneous Information), Novosibirsk: Nauka, 1999.
[42] Borovkov, A.A., Teoriya veroyatnostei (Probability Theory), Moscow: Nauka, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.