Le, Maohua A note on the diophantine equation \(x^{2}+b^{y}=c^{z}\). (English) Zbl 1164.11319 Czech. Math. J. 56, No. 4, 1109-1116 (2006). Summary: Let \(a\), \(b\), \(c\), \(r\) be positive integers such that \(a^{2}+b^{2}=c^{r}\), \(\min (a,b,c,r)>1\), \(\text{gcd}(a,b)=1\), \(a\) is even and \(r\) is odd. In this paper we prove that if \(b\equiv 3\pmod 4\) and either \(b\) or \(c\) is an odd prime power, then the equation \(x^{2}+b^{y}=c^{z}\) has only the positive integer solution \((x,y,z)=(a,2,r)\) with \(\min (y,z)>1\). Cited in 2 Documents MSC: 11D61 Exponential Diophantine equations Keywords:exponential diophantine equation; Lucas number; positive divisor PDFBibTeX XMLCite \textit{M. Le}, Czech. Math. J. 56, No. 4, 1109--1116 (2006; Zbl 1164.11319) Full Text: DOI EuDML References: [1] Y. Bilu, G. Hanrot and P. Voutier (with an appendix by M. Mignotte): Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75–122. · Zbl 0995.11010 · doi:10.1515/crll.2001.080 [2] Y. Bugeaud: On some exponential diophantine equations. Monatsh. Math. 132 (2001), 93–97. · Zbl 1014.11023 · doi:10.1007/s006050170046 [3] Z.-F. Cao and X.-L. Dong: The diophantine equation a 2+ b y = c z . Proc. Japan Acad. 77A (2001), 1–4. · Zbl 0987.11020 [4] Z.-F. Cao, X.-L. Dong and Z. Li: A new conjecture concerning the diophantine equation x 2 + b y = c z . Proc. Japan Acad. 78A (2002), 199–202. · Zbl 1093.11022 [5] L. Jeśmanowicz: Several remarks on Pythagorean number. Wiadom. Mat. 1 (1955/1956), 196–202. (In Polish.) [6] C. Ko: On the diophantine equation x 2 = y n + 1, x y 0. Sci.Sin. 14 (1964), 457–460. · Zbl 0163.04004 [7] M.-H. Le: A note on Jeśmanowicz’ conjecture. Colloq. Math. 64 (1995), 47–51. [8] L. J. Mordell: Diophantine Equations. Academic Press, London, 1969. [9] T. Nagell: Sur I’impossibilitè de quelques equation á deux indèterminèes. Norsk Matem. Forenings Skrifter 13 (1921), 65–82. [10] N. Terai: The diophantine equation x 2 + q m = p n . Acta Arith. 63 (1993), 351–358. · Zbl 0770.11020 [11] P. Voutier: Primitive divisors of Lucas and Lehmer sequences. Math. Comp. 64 (1995), 869–888. · Zbl 0832.11009 · doi:10.1090/S0025-5718-1995-1284673-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.