×

Invertible commutativity preservers of matrices over max algebra. (English) Zbl 1164.15303

Summary: The max algebra consists of the nonnegative real numbers equipped with two binary operations, maximization and multiplication. We characterize the invertible linear operators that preserve the set of commuting pairs of matrices over a subalgebra of max algebra.

MSC:

15A04 Linear transformations, semilinear transformations
15A03 Vector spaces, linear dependence, rank, lineability
15A27 Commutativity of matrices
15B33 Matrices over special rings (quaternions, finite fields, etc.)
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] L. B. Beasley: Linear transformations on matrices: the invariance of commuting pairs of matrices. Linear and Multilinear Algebra 6 (1978), 179–183. · Zbl 0397.15010 · doi:10.1080/03081087808817236
[2] L. B. Beasley and N. J. Pullman: Linear operators that strongly preserve commuting pairs of fuzzy matrices. Fuzzy Sets and Systems 41 (1991), 167–173. · Zbl 0729.15013 · doi:10.1016/0165-0114(91)90220-K
[3] P. Moller: Theorie algebrique des Systemes a Evenements Discrets. These, Ecole des Mines de Paris, 1988.
[4] S. Z. Song and K. T. Kang: Column ranks and their preservers of matrices over max algebra. Linear and Multilinear Algebra 51 (2003), 311–318. · Zbl 1055.15005 · doi:10.1080/0308108031000069173
[5] W. Watkins: Linear maps that preserve commuting pairs of matrices. Linear Algebra and Appl. 14 (1976), 29–35. · Zbl 0329.15005 · doi:10.1016/0024-3795(76)90060-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.