×

On the inertia sets of some symmetric sign patterns. (English) Zbl 1164.15318

Summary: A matrix whose entries consist of elements from the set \(\{+,-,0\}\) is a sign pattern matrix. Using a linear algebra theoretical approach we generalize some recent results due to F. J. Hall, {Z. Li} and others involving the inertia of symmetric tridiagonal sign pattern matrices.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15B36 Matrices of integers
PDF BibTeX XML Cite
Full Text: DOI EuDML Link

References:

[1] B. E. Cain and E. Marques de Sá: The inertia of Hermitian matrices with a prescribed 2 {\(\times\)} 2 block decomposition. Linear and Multilinear Algebra 31 (1992), 119–130. · Zbl 0756.15024
[2] B. E. Cain and E. Marques de Sá: The inertia of certain skew-triangular block matrices. Linear Algebra Appl. 160 (1992), 75–85. · Zbl 0752.15006
[3] C. Eschenbach and C. R. Johnson: A combinatorial converse to the Perron-Frobenius theorem. Linear Algebra Appl. 136 (1990), 173–180. · Zbl 0739.15004
[4] C. Eschenbach and C. R. Johnson: Sign patterns that require real, nonreal or pure imaginary eigenvalues. Linear and Multilinear Algebra 29 (1991), 299–311. · Zbl 0764.05015
[5] Y. Gao and Y. Shao: The inertia set of nonnegative symmetric sign pattern with zero diagonal. Czechoslovak Math. J. 53 (2003), 925–934. · Zbl 1080.15501
[6] F. J. Hall and Z. Li: Inertia sets of symmetric sign pattern matrices. Numer. Math. J. Chinese Univ. (English Ser.) 10 (2001), 226–240. · Zbl 0997.15010
[7] F. J. Hall, Z. Li and Di Wang: Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153–169. · Zbl 0994.15028
[8] R. A. Horn and C. R. Johnson: Matrix Analysis, Cambridge University Press, Cambridge. 1985. · Zbl 0576.15001
[9] C. Jeffries and C. R. Johnson: Some sign patterns that preclude matrix stability. SIAM J. Matrix Anal. Appl. 9 (1988), 19–25. · Zbl 0676.15004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.