×

zbMATH — the first resource for mathematics

On general two-scale convergence and its application to the characterization of \(G\)-limits. (English) Zbl 1164.35318
Summary: We characterize some \(G\)-limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained \(G\)-limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence.

MSC:
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297–342. · Zbl 0866.35017
[2] G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482–1518. · Zbl 0770.35005
[3] G. Allaire: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences 146.Springer-Verlag, New York, 2002. · Zbl 0990.35001
[4] H.W. Alt: Lineare Funktionalanalysis. Springer-Verlag, Berlin, 1985.
[5] A. Bensoussan, J.-L. Lions, G. Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications. North-Holland, Amsterdam-New York-Oxford, 1978.
[6] J. Casado-Diaz, I. Gayte: A general compactness result and its application to the two-scale convergence of almost periodic functions. C. R. Math. Acad. Sci. Paris, Ser. 1 323 (1996), 329–334. · Zbl 0865.46003
[7] D. Cioranescu, A. Damlamian, and G. Griso: Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris, Ser. 1 335 (2002), 99–104. · Zbl 1001.49016
[8] D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 1999. · Zbl 0939.35001
[9] V. Chiadò Piat, A. Defranceschi: Homogenization of monotone operators. Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. · Zbl 0705.35041
[10] V. Chiadò Piat, G. Dal Maso, and A. Defranceschi: G-convergence of monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123–160. · Zbl 0731.35033
[11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS Regional Conference Series in Mathematics, Vol. 74. 1990.
[12] A. Holmbom, J. Silfver, N. Svanstedt, and N. Wellander: On two-scale convergence and related sequential compactness topics. Appl. Math. 51 (2006), 247–262. · Zbl 1164.40304
[13] D. Lukkassen, G. Nguetseng, and P. Wall: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35–86. · Zbl 1061.35015
[14] M. L. Mascarenhas, A.-M. Toader: Scale convergence in homogenization. Numer. Funct. Anal. Optimization. 22 (2001), 127–158. · Zbl 0995.49013
[15] F. Murat: H-convergence. Séminarie d’Analyse Fonctionnelle et Numérique, 1977–1978. Université d’Alger, Alger, 1978.
[16] F. Murat: Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser. 5 (1978), 489–507. · Zbl 0399.46022
[17] F. Murat: Compacité par compensation II. In: Proc. Int. Meet. ”Recent Methods in Nonlinear Analysis”, Pitagora, Bologna. 1979, pp. 245–256.
[18] L. Nechvátal: Alternative approaches to the two-scale convergence. Appl. Math. 49 (2004), 97–110. · Zbl 1099.35012
[19] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608–623. · Zbl 0688.35007
[20] G. Nguetseng: Homogenization structures and applications I. Z. Anal. Anwend. 22 (2003), 73–107. · Zbl 1045.46031
[21] J. Silfver: Sequential convergence for functions and operators. Licentiate Thesis 10. Mid Sweden University, Östersund, 2004.
[22] S. Spagnolo: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat, III. Ser. 21 (1967), 657–699. (In Italian.) · Zbl 0153.42103
[23] S. Spagnolo: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sculoa Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (In Italian.)
[24] S. Spagnolo: Convergence in energy for elliptic operators. In: Proc. 3rd Symp. Numer. Solut. Partial Differ. Equat., College Park, 1975. Academic Press, San Diego, 1976, pp. 469–498.
[25] L. Tartar: Homogénéisation et compacité par compensation. Cours Peccot, Collège de France, Paris, March 1977. Unpublished, partly written in [15].
[26] L. Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriott-Watt Symposium. Res. Notes Math. 39, Vol. 4 (R. J. Knops, ed.). Pitman, Boston-London, 1979, pp. 136–212.
[27] V.V. Zhikov, S. M. Kozlov, O. A. Oleinik: Homogenization of Differential Operators and Variational Problems. Springer-Verlag, Berlin, 1994.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.