×

Unilateral dynamic contact of von Kármán plates with singular memory. (English) Zbl 1164.35447

Summary: The solvability of the contact problem is proved provided the plate is simply supported. The singular memory material is assumed. This makes it possible to get a priori estimates important for the strong convergence of gradients of velocities of solutions to the penalized problem.

MSC:

35L85 Unilateral problems for linear hyperbolic equations and variational inequalities with linear hyperbolic operators
74D10 Nonlinear constitutive equations for materials with memory
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI EuDML Link

References:

[1] I. Bock, J. Jarušek: Unilateral dynamic contact of viscoelastic von Kármán plates. Adv. Math. Sci. Appl. 16 (2006), 175–187.
[2] I. Bock, J. Lovíšek: On unilaterally supported viscoelastic von Kármán plates with a long memory. Math. Comput. Simul. 61 (2003), 399–407. · Zbl 1043.74029
[3] I. Bock, J. Lovíšek: On a contact problem for a viscoelastic von Kármán plate and its semidiscretization. Appl. Math. 50 (2005), 203–217. · Zbl 1099.49003
[4] P. G. Ciarlet, P. Rabier: Les équations de von Kármán. Springer-Verlag, Berlin, 1980.
[5] C. Eck, J. Jarušek, and M. Krbec: Unilateral contact problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics No. 270. Chapman & Hall/CRC, Boca Raton-London-New York-Singapore, 2005.
[6] J. Jarušek: Solvability of unilateral hyperbolic problems involving viscoelasticity via penalization. Proc. of ”Conference EQUAM”, Varenna 1992 (R. Salvi, ed.). SAACM 3 (1993), 129–140.
[7] J. Jarušek: Solvability of the variational inequality for a drum with a memory vibrating in the presence of an obstacle. Boll. Unione Mat. Ital. VII. Ser., A 8 (1994), 113–122. · Zbl 0809.73039
[8] J. Jarušek, J. V. Outrata: On sharp optimality conditions in control of contact problems with strings. Nonlinear Anal. 67 (2007), 1117–1128. · Zbl 1113.49024
[9] H. Koch, A. Stahel: Global existence of classical solutions to the dynamic von Kármán equations. Math. Methods Appl. Sci. 16 (1993), 581–586. · Zbl 0778.73029
[10] J. E. Muñoz Rivera, G. Perla Menzala: Decay rates of solutions to a von Kármán system for viscoelastic plates with memory. Q. Appl. Math. 57 (1999), 181–200. · Zbl 1021.35127
[11] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Masson/Academia, Paris/Praha, 1967.
[12] A. Oukit, R. Pierre: Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited. Numer. Math. 74 (1996), 453–477 · Zbl 0923.65080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.