Montalvo, F.; Pulgarín, A. A.; Requejo, B. Closed ideals in topological algebras: a characterization of the topological \(\Phi \)-algebra \(C_k(X)\). (English) Zbl 1164.46339 Czech. Math. J. 56, No. 3, 903-918 (2006). Summary: Let \(A\) be a uniformly closed and locally m-convex \(\Phi \)-algebra. We obtain internal conditions on \(A\) stated in terms of its closed ideals for \(A\) to be isomorphic and homeomorphic to \(C_k(X)\), the \(\Phi \)-algebra of all the real continuous functions on a normal topological space \(X\) endowed with the compact convergence topology. Cited in 2 Documents MSC: 46H15 Representations of topological algebras 54H12 Topological lattices, etc. (topological aspects) 06B30 Topological lattices Keywords:locally m-convex algebra; \(\Phi \)-algebra; compact convergence topology × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] F. W. Anderson: Approximation in systems of real-valued continuous functions. Trans. Am. Math. Soc. 103 (1962), 249–271. · Zbl 0175.14301 · doi:10.1090/S0002-9947-1962-0136976-0 [2] R. Bkouche: Couples spectraux et faisceaux associés. Applications aux anneaux de fonctions. Bull. Soc. Math. France 98 (1970), 253–295. · Zbl 0201.37204 [3] W. A. Feldman, J. F. Porter: The order topology for function lattices and realcompactness. Internat. J. Math. Math. Sci. 4 (1981), 289–304. · Zbl 0465.46011 · doi:10.1155/S0161171281000173 [4] I. M. Gelfand: Normierte ringe. Rec. Math. Moscou, n. Ser. 9 (1941), 3–24. · JFM 67.0406.02 [5] L. Gillman, M. Jerison: Rings of Continuous Functions. Grad. Texts in Math. Vol. 43. Springer-Verlag, New York, 1960. · Zbl 0100.32202 [6] A. W. Hager: On inverse-closed subalgebras of C(X). Proc. London Math. Soc. 19 (1969), 233–257. · Zbl 0169.54005 · doi:10.1112/plms/s3-19.2.233 [7] M. Henriksen: Unsolved problems on algebraic aspects of C(X). In: Rings of Continuous Functions. Lecture Notes in Pure and Appl. Math. Vol. 95. M. Dekker, New York, 1985, pp. 195–202. [8] M. Henriksen, D. J. Johnson: On the structure of a class of Archimedean lattice-ordered algebras. Fundam. Math. 50 (1961), 73–94. · Zbl 0099.10101 [9] C. B. Huijsmans, B. de Pagter: Ideal theory in f-algebras. Trans. Am. Math. Soc. 269 (1982), 225–245. · Zbl 0483.06009 [10] D. J. Johnson: A structure theory for a class of lattice-ordered rings. Acta Math. 104 (1960), 163–215. · Zbl 0094.25305 · doi:10.1007/BF02546389 [11] F. Montalvo, A. Pulgarín, B. Requejo: Order topologies on l-algebras. Topology Appl. 137 (2004), 225–236. · Zbl 1053.06012 · doi:10.1016/S0166-8641(03)00212-8 [12] P. D. Morris, D. E. Wulbert: Functional representation of topological algebras. Pac. J. Math. 22 (1967), 323–337. · Zbl 0163.36605 [13] J. Muñoz, J. M. Ortega: Sobre las álgebras localmente convexas. Collect. Math. 20 (1969), 127–149. [14] D. Plank: Closed l-ideals in a class of lattice-ordered algebras. Ill. J. Math. 15 (1971), 515–524. · Zbl 0219.54034 [15] A. Pulgarín: A characterization of C k (X) as a Fréchet f-algebra. Acta Math. Hung. 88 (2000), 133–138. · Zbl 0988.54018 · doi:10.1023/A:1006764913661 [16] B. Requejo: A characterization of the topology of compact convergence on C(X). Topology Appl. 77 (1997), 213–219. · Zbl 0899.46017 · doi:10.1016/S0166-8641(96)00143-5 [17] B. Requejo: Localización Topológica. Publ. Dpto. Mat. Unex, Vol. 32, Badajoz, 1995. [18] H. H. Schaefer: Topological Vector Spaces. Grad. Text in Math. Vol. 3. Springer-Verlag, New York, 1971. [19] H. Tietze: Über Funktionen, die auf einer abgeschlossenen Menge stetig sind. J. für Math. 145 (1914), 9–14. · JFM 45.0628.03 [20] S. Warner: The topology of compact convergence on continuous function spaces. Duke Math. J. 25 (1958), 265–282. · Zbl 0081.32802 · doi:10.1215/S0012-7094-58-02523-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.