Ko, Eungil; Nam, Hae-Won; Yang, Youngoh On totally \(\ast \)-paranormal operators. (English) Zbl 1164.47319 Czech. Math. J. 56, No. 4, 1265-1280 (2006). Summary: In this paper, we study some properties of a totally \(\ast \)-paranormal operator (as defined below) on a Hilbert space. In particular, we characterize a totally \(\ast \)-paranormal operator. Also, we show that Weyl’s theorem and the spectral mapping theorem hold for totally \(\ast \)-paranormal operators through the local spectral theory. Finally, we show that every totally \(\ast \)-paranormal operator satisfies an analogue of the single valued extension property for \(W^{2}(D,H)\) and that some totally \(\ast \)-paranormal operators have scalar extensions. Cited in 1 Document MSC: 47B20 Subnormal operators, hyponormal operators, etc. 47B38 Linear operators on function spaces (general) Keywords:hyponormal; totally \(\ast \)-paranormal; hypercyclic operators PDFBibTeX XMLCite \textit{E. Ko} et al., Czech. Math. J. 56, No. 4, 1265--1280 (2006; Zbl 1164.47319) Full Text: DOI EuDML References: [1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu: Approximation of Hilbert space operators, Volume II. Research Notes in Mathematics 102, Pitman, Boston, 1984. · Zbl 0572.47001 [2] S. C. Arora and J. K. Thukral: On a class of operators. Glasnik Math. 21 (1986), 381–386. · Zbl 0616.47017 [3] S. K. Berberian: An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math J. 16 (1969), 273–279. · Zbl 0175.13603 · doi:10.1307/mmj/1029000272 [4] S. K. Berberian: The Weyl’s spectrum of an operator. Indiana Univ. Math. J. 20 (1970), 529–544. · Zbl 0203.13401 · doi:10.1512/iumj.1970.20.20044 [5] S. W. Brown: Hyponormal operators with thick spectrum have invariant subspaces. Ann. of Math. 125 (1987), 93–103. · Zbl 0635.47020 · doi:10.2307/1971289 [6] L. A. Coburn: Weyl’s theorem for non-normal operators. Michigan Math. J. 13 (1966), 285–288. · Zbl 0173.42904 · doi:10.1307/mmj/1031732778 [7] I. Colojoara and C. Foias: Theory of generalized spectral operators. Gordon and Breach, New York, 1968. [8] J. B. Conway: Subnormal operators. Pitman, London, 1981. [9] S. Djordjevic, I. Jeon and E. Ko: Weyl’s theorem through local spectral theory. Glasgow Math. J. 44 (2002), 323–327. · Zbl 1072.47501 · doi:10.1017/S0017089502020141 [10] B. P. Duggal: On the spectrum of p-hyponormal operators. Acta Sci. Math. (Szeged) 63 (1997), 623–637. · Zbl 0893.47013 [11] J. Eschmeier: Invariant subspaces for subscalar operators. Arch. Math. 52 (1989), 562–570. · Zbl 0651.47002 · doi:10.1007/BF01237569 [12] P. R. Halmos: A Hilbert space problem book. Springer-Verlag, 1982. · Zbl 0496.47001 [13] R. E. Harte: Invertibility and singularity. Dekker, New York, 1988. · Zbl 0636.47001 [14] C. Kitai: Invariant closed sets for linear operators. Ph.D. Thesis, Univ. of Toronto, 1982. [15] E. Ko: Algebraic and triangular n-hyponormal operators. Proc. Amer. Math. Soc. 123 (1995), 3473–3481. · Zbl 0877.47015 [16] K. B. Laursen: Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336. · Zbl 0783.47028 [17] K. B. Laursen: Essential spectra through local spectral theory. Proc. Amer. Math. Soc. 125 (1997), 1425–1434. · Zbl 0871.47003 · doi:10.1090/S0002-9939-97-03852-5 [18] K. K. Oberai: On the Weyl spectrum. Illinois J. Math. 18 (1974), 208–212. · Zbl 0277.47002 [19] K. K. Oberai: On the Weyl spectrum (II). Illinois J. Math. 21 (1977), 84–90. · Zbl 0358.47004 [20] M. Putinar: Hyponormal operators are subscalar. J. Operator Th. 12 (1984), 385–395. · Zbl 0573.47016 [21] R. Lange: Biquasitriangularity and spectral continuity. Glasgow Math. J. 26 (1985), 177–180. · Zbl 0583.47006 · doi:10.1017/S0017089500005966 [22] B. L. Wadhwa: Spectral, M-hyponormal and decomposable operators. Ph.D. thesis, Indiana Univ., 1971. [23] D. Xia: Spectral theory of hyponormal operators. Operator Theory 10, Birkhäuser-Verlag, 1983. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.