Bermudo, S.; Marcantognini, S. A. M.; Morán, M. D. Operators of Hankel type. (English) Zbl 1164.47326 Czech. Math. J. 56, No. 4, 1147-1163 (2006). Summary: Considering Hankel operators and their symbols, as generalized by V.Pták and P.Vrbová [Acta Sci.Math.52, No.1/2, 117–140 (1988; Zbl 0661.47028)], the present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator \(X\) by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a byproduct, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry \(V\) so that there is a bijective correspondence between the symbols of \(X\) and the minimal unitary extensions of \(V\). Cited in 2 Documents MSC: 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators 47A20 Dilations, extensions, compressions of linear operators Keywords:Hankel operators; Hankel symbols Citations:Zbl 0661.47028 PDFBibTeX XMLCite \textit{S. Bermudo} et al., Czech. Math. J. 56, No. 4, 1147--1163 (2006; Zbl 1164.47326) Full Text: DOI EuDML References: [1] D. Z. Arov and L. Z. Grossman: Scattering matrices in the theory of extensions of isometric operators. Soviet Math. Dokl. 27 (1983), 518–522. · Zbl 0543.47010 [2] M. Cotlar and C. Sadosky: Prolongements des formes de Hankel gènèralisèes et formes de Toeplitz. C. R. Acad. Sci Paris Sér. I Math. 305 (1987), 167–170. · Zbl 0615.47007 [3] M. Cotlar and C. Sadosky: Integral representations of bounded Hankel forms defined in scattering systems with a multiparametric evolution group. Operator Theory: Adv. Appl. 35 (1988), 357–375. · Zbl 0679.47008 [4] A. Dijksma, S. A. M. Marcantognini and H. S. V. de Snoo: A Schur type analyisis of the minimal unitary Hilbert space extensions of a Kreĭn space isometry whose defect subspaces are Hilbert spaces. Z. Anal. Anwendungen 13 (1994), 233–260. · Zbl 0807.47012 [5] R. G. Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415. · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1 [6] C. H. Mancera and P. J. Paúl: On Pták’s generalization of Hankel operators. Czechoslovak Math. J. 51 (2001), 323–342. · Zbl 0983.47019 · doi:10.1023/A:1013746930743 [7] C. H. Mancera and P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation T 2 X = XT 1 * . Integral Equations Operator Theory 39 (2001), 475–495. · Zbl 0980.47031 · doi:10.1007/BF01203325 [8] M. D. Morán: On intertwining dilations. J. Math. Anal. Appl. 141 (1989), 219–234. · Zbl 0693.47008 · doi:10.1016/0022-247X(89)90218-7 [9] V. Pták: Factorization of Toeplitz and Hankel operators. Math. Bohem. 122 (1997), 131–140. · Zbl 0892.47026 [10] V. Pták and P. Vrbová: Operators of Toeplitz and Hankel type. Acta Sci. Math. (Szeged) 52 (1988), 117–140. · Zbl 0661.47028 [11] V. Pták and P. Vrbová: Lifting intertwining relations. Integral Equations Operator Theory 11 (1988), 128–147. · Zbl 0639.47022 · doi:10.1007/BF01236657 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.