×

zbMATH — the first resource for mathematics

Regularity results for a class of obstacle problems. (English) Zbl 1164.49009
Summary: We prove some optimal regularity results for minimizers of the integral functional \(\int f(x,u,Du)\,\text dx\) belonging to the class \(K:=\{u \in W^{1,p}(\Omega )\: u\geq \psi \}\), where \(\psi \)  is a fixed function, under standard growth conditions of \(p\)-type, i.e. \[ L^{-1}| z| ^p \leq f(x,s,z) \leq L(1+| z| ^p). \]

MSC:
49N60 Regularity of solutions in optimal control
35J85 Unilateral problems; variational inequalities (elliptic type) (MSC2000)
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth. Arch. Ration. Mech. Anal. 156 (2001), 121–140. · Zbl 0984.49020
[2] H. J. Choe: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383–394. · Zbl 0733.35024
[3] A. Coscia, G. Mingione: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 363–368. · Zbl 0920.49020
[4] G. Cupini, N. Fusco, and R. Petti: Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999), 578–597. · Zbl 0949.49022
[5] G. Cupini, A. P. Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem. J. Convex Anal. 10 (2003), 389–408. · Zbl 1084.49030
[6] G. Cupini, R. Petti: Morrey spaces and local regularity of minimizers of variational integrals. Rend. Mat. Appl., VII. Ser. 21 (2001), 121–141. · Zbl 1048.49024
[7] I. Ekeland: Nonconvex minimization problems. Bull. Am. Math. Soc. 3 (1979), 443–474. · Zbl 0441.49011
[8] M. Eleuteri: Hölder continuity results for a class of functionals with non standard growth. Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157. · Zbl 1178.49045
[9] L. Esposito, F. Leonetti, and G. Mingione: Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math. 14 (2002), 245–272. · Zbl 0999.49022
[10] V. Ferone, N. Fusco: Continuity properties of minimizers of integral functionals in a limit case. J. Math. Anal. Appl. 202 (1996), 27–52. · Zbl 0865.49008
[11] I. Fonseca, N. Fusco: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499. · Zbl 0899.49018
[12] I. Fonseca, N. Fusco, and P. Marcellini: An existence result for a nonconvex variational problem via regularity. ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. · Zbl 1044.49011
[13] N. Fusco, J. Hutchinson: C 1,{\(\alpha\)}-partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985), 121–143. · Zbl 0587.49005
[14] M. Giaquinta, E. Giusti: Quasi-minima. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 79–107. · Zbl 0541.49008
[15] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977. · Zbl 0361.35003
[16] E. Giusti: Direct Methods in the Calculus of Variations. World Scientific, Singapore, 2003. · Zbl 1028.49001
[17] J. J. Manfredi: Regularity for minima of functionals with p-growth. J. Differ. Equations 76 (1988), 203–212. · Zbl 0674.35008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.