zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On quasi-conformally flat weakly Ricci symmetric manifolds. (English) Zbl 1164.53011
The authors obtain certain properties of (pseudo-)Riemannian manifolds which are weakly Ricci symmetric and simultaneously quasi-conformally flat. The reader must be careful because the formulations of the theorems are not complete. For instance, Theorem 1 states that the Ricci tensor is of rank 1. In this theorem, it is in fact additionally assumed that $\delta\neq0$, which eliminates a large subclass of the considered manifolds. Moreover, the examples are not well described. For instance, the metric in Example 1 is Ricci recurrent, which contradicts Theorem 11, where the non-Ricci recurrence of this metric is asserted.

53B20Local Riemannian geometry
53B30Lorentz metrics, indefinite metrics
53B35Hermitian and Kählerian structures (local differential geometry)
53B05Linear and affine connections
Full Text: DOI
[1] T. Adati, On subprojective spaces III, Tohoku Math. J., 3 (1951), 343--358. · Zbl 0045.11202 · doi:10.2748/tmj/1178245490
[2] K. Amur and Y. B. Maralabhavi, On quasi-conformally flat spaces, Tensor N. S., 31 (1977), 194--198. · Zbl 0362.53010
[3] T. Q. Binh, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen, 42 (1993), 103--107. · Zbl 0797.53041
[4] M. C. Chaki and S. Koley, On generalized pseudo Ricci symmetric manifolds, Periodica Math. Hungar., 28 (1993), 123--129. · Zbl 0821.53017 · doi:10.1007/BF01876902
[5] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297--306. · Zbl 0968.53030
[6] B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor N. S., 26 (1972), 318--322. · Zbl 0257.53027
[7] B. Y. Chen and K. Yano, Special conformally flat spaces and Canal hypersurfaces, Tohoku Math. J., 25 (1973), 177--184. · Zbl 0266.53043 · doi:10.2748/tmj/1178241376
[8] J. A. Schouten, Ricci-Calculus, Springer-Verlag (Berlin, 1954).
[9] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai, 50 (1989), 663--670. · Zbl 0791.53021
[10] L. Tamássy and T. Q. Binh, On weak symmetrics of Einstein and Sasakian manifolds, Tensor N. S., 53 (1993), 140--148. · Zbl 0849.53038
[11] K. Yano, Concircular geometry, I, Proc. Imp. Acad. Tokyo, 16 (1940), 195--200. · Zbl 0024.08102 · doi:10.3792/pia/1195579139
[12] K. Yano, On the torseforming direction in Riemannian spaces, Proc. Imp. Acad., Tokyo, 20 (1944), 340--345. · Zbl 0060.39102 · doi:10.3792/pia/1195572958
[13] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161--184. · Zbl 0167.19802