Tomáš, Jiří M. Non-holonomic \((r,s,q)\)-jets. (English) Zbl 1164.58304 Czech. Math. J. 56, No. 4, 1131-1145 (2006). Summary: We generalize the concept of an \((r,s,q)\)-jet to the concept of a non-holonomic \((r,s,q)\)-jet. We define the composition of such objects and introduce a bundle functor \({\tilde {J}}^{r,s,q}\: \mathcal F \mathcal M _{k,l} \times \mathcal F \mathcal M \) defined on the product category of \((k,l)\)-dimensional fibered manifolds with local fibered isomorphisms and the category of fibered manifolds with fibered maps. We give the description of such functors from the point of view of the theory of Weil functors.Further, we introduce a bundle functor \(\tilde {J}^{r,s,q}_1\: 2\)-\(\mathcal F \mathcal M _{k,l} \to \mathcal F \mathcal M\) defined on the category of \(2\)-fibered manifolds with \(\mathcal F \mathcal M _{k,l}\)-underlying objects. MSC: 58A05 Differentiable manifolds, foundations 58A20 Jets in global analysis Keywords:bundle functor; jet; non-holonomic jet; Weil bundle PDFBibTeX XMLCite \textit{J. M. Tomáš}, Czech. Math. J. 56, No. 4, 1131--1145 (2006; Zbl 1164.58304) Full Text: DOI EuDML References: [1] M. Doupovec and I. Kolář: On the jets of fibered manifold morphisms. Cah. Topologie et Géom. Différ. Catég. 40 (1999), 21–30. [2] C. Ehresmann: Extension du Calcul des jets aux jets non-holonomes. C. R. Acad. Sci. Paris 239 (1954), 1763–1764. · Zbl 0057.15603 [3] I. Kolář: Bundle functors of the jet type. Diff. Geom. Appl., Proc. of the Satelite Conference of ICM in Berlin Diff. Geometry and its Applications, Brno (1998). [4] I. Kolář: Covariant approach to natural transformations of Weil functors. Comm. Math. Univ. Carolinae 27 (1986), 723–729. · Zbl 0603.58001 [5] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer Verlag, 1993. · Zbl 0782.53013 [6] I. Kolář and W. M. Mikulski: On the fiber product preserving bundle functors. Diff. Geom. and Appl. 11 (1999), 105–115. · Zbl 0935.58001 · doi:10.1016/S0926-2245(99)00022-4 [7] M. Kureš: On the simplicial structure of some Weil bundles. Rend. Circ. Mat. Palermo Ser. II, Num. 54 (1997), 131–140. [8] W. M. Mikulski: Product preserving bundle functors on fibered manifolds. Arch. Math. 32-4 (1996), 307–316. · Zbl 0881.58002 [9] W. M. Mikulski: On the product preserving bundle functors on k-fibered manifolds. Demonstratio Math. 34-3 (2001), 693–700. [10] W. M. Mikulski and J. M. Tomáš: Liftings of k-projectable vector fields to product preserving bundle functors. Acta Univ. Jagellon. Cracow 37-3 (2004), 447–462. · Zbl 1064.58004 [11] W. M. Mikulski and J. Tomáš: Product preserving bundle functors on fibered fibered manifolds. Colloq. Math. 96-1 (2003), 17–26. · Zbl 1045.58001 · doi:10.4064/cm96-1-3 [12] J. Pradines: Representation des jets non holonomes per des morfismes vectoriels doubles soudes. C. R. Acad. Sci. Paris 278 (1974), 1523–1526. · Zbl 0285.58002 [13] J. Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo Ser. II, Num. 63 (2000), 187–196. · Zbl 0971.58003 [14] J. Tomáš: Natural operators transforming projectable vector fields to product preserving bundles. Rend. Circ. Mat. Palermo Ser. II, Num. 59 (1999), 181–187. · Zbl 0959.58001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.