Simplicial finite elements in higher dimensions. (English) Zbl 1164.65493

Summary: Over the past fifty years, finite element methods for the approximation of solutions of partial differential equations (PDEs) have become a powerful and reliable tool. Theoretically, these methods are not restricted to PDEs formulated on physical domains up to dimension three. Although at present there does not seem to be a very high practical demand for finite element methods that use higher dimensional simplicial partitions, there are some advantages in studying the methods independent of the dimension. For instance, it provides additional insights into the structure and essence of proofs of results in one, two and three dimensions. In this survey paper, we review some recent progress in this direction.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs


Full Text: DOI EuDML Link


[1] B. Achchab, S. Achchab, O. Axelsson, and A. Souissi: Upper bound of the constant in strengthened C.B.S. inequality for systems of linear partial differential equations. Numer. Algorithms 32 (2003), 185–191. · Zbl 1037.65128
[2] B. Achchab, O. Axelsson, A. Laayouni, and A. Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three-dimensional elasticity system. Numer. Linear Algebra Appl. 8 (2001), 191–205. · Zbl 1050.74043
[3] D. N. Arnold, R. Falk, and R. Winther: Finite element exterior calculus. Acta Numer. 15 (2006), 1–135. · Zbl 1185.65204
[4] O. Axelsson: On multigrid methods of the two-level type. In: Multigrid Methods. Lecture Notes in Mathematics, Vol. 960 (W. Hackbusch, U. Trotenberg, eds.). Springer-Verlag, Berlin, 1982, pp. 352–367. · Zbl 0505.65040
[5] O. Axelsson, R. Blaheta: Two simple derivations of universal bounds for the CBS inequality constant. Appl. Math. 49 (2004), 57–72. · Zbl 1099.65103
[6] R. Blaheta: Nested tetrahedral grids and strengthened CBS inequality. Numer. Linear Algebra Appl. 10 (2003), 619–637. · Zbl 1071.65164
[7] R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimates of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numer. Linear Algebra Appl. 11 (2004), 309–326. · Zbl 1164.65392
[8] D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edition. Cambridge University Press, Cambridge, 2001, pp. 309–326. · Zbl 0976.65099
[9] J. H. Brandts, S. Korotov, and M. Křížek: The strengthened Cauchy-Bunyakowski-Schwarz inequality for n-simplicial linear finite elements. In: Springer Lecture Notes in Computer Science, Vol. 3401. Springer-Verlag, Berlin, 2005, pp. 203–210. · Zbl 1118.65384
[10] J. H. Brandts, S. Korotov, and M. Křížek: Survey of discrete maximum principles for linear elliptic and parabolic problems. In: Proc. Conf. ECCOMAS 2004 (P. Neittaanmäki et al., eds.). Univ. of Jyväskylä, 2004, pp. 1–19.
[11] J. H. Brandts, S. Korotov, and M. K Křížek: Dissection of the path-simplex in \(\mathbb{R}\)n into n path-subsimplices. Linear Algebra Appl. 421 (2007), 382–393. · Zbl 1112.51006
[12] J. H. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505. · Zbl 1042.65081
[13] S. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer-Verlag, New York, 1994. · Zbl 0804.65101
[14] P. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. · Zbl 0383.65058
[15] C. M. Chen: Optimal points of stresses for tetrahedron linear element. Nat. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (In Chinese.) · Zbl 0501.65052
[16] COMSOL, Multiphysics Version 3.3 (2006). Sweden, http://www.femlab.com.
[17] H. S. M. Coxeter: Trisecting an orthoscheme. Comput. Math. Appl. 17 (1989), 59–71. · Zbl 0706.51019
[18] FEMLAB version 2.2 (2002). Multiphysics in Matlab, for use with Matlab. COMSOL, Sweden, http://www.femlab.com.
[19] H. Fujii: Some remarks on-nite element analysis of time-dependent field problems. In: Theory Pract. Finite Elem. Struct. Anal. Univ. Tokyo Press, Tokyo, 1973, pp. 91–106.
[20] G. Goodsell: Pointwise superconvergence of the gradient for the linear tetrahedral element. Numer. Methods Partial Differ. Equations 10 (1994), 651–666. · Zbl 0807.65112
[21] J. Karátson, S. Korotov: Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions. Numer. Math. 99 (2005), 669–698. · Zbl 1067.65127
[22] M. Křížek, Q. Lin: On the diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69. · Zbl 0824.65112
[23] M. Křížek, P. Neittaanmäki: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198. · Zbl 0624.65107
[24] Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Proc. Conf. Univ. of Jyväskylä, 1996. Lecture Notes in Pure and Applied Mathematics, Vol. 196 (M. Křížek, P. Neittaanmäki, and R. Stenberg, eds.). Marcel Dekker, New York, 1998.
[25] J. C. Nédélec: Mixed finite elements in \(\mathbb{R}\)3. Numer. Math. 35 (1980), 315–341. · Zbl 0419.65069
[26] J. C. Nédélec: A new family of mixed-nite elements in \(\mathbb{R}\)3. Numer. Math. 50 (1986), 57–81.
[27] L. A. Oganesjan, L. A. Ruhovets: Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary. Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 1102–1120.
[28] V. Ruas Santos: On the strong maximum principle for some piecewise linear-nite element approximate problems of non-positive type. J. Fac. Sci., Univ. Tokyo, Sect. IA Math. 29 (1982), 473–491. · Zbl 0488.65052
[29] R.P. Stevenson: An optimal adaptive finite element method. SIAM J. Numer. Anal. 42 (2005), 2188–2217. · Zbl 1081.65112
[30] P. Tong: Exact solutions of certain problems by finite-element method. AIAA J. 7 (1969), 178–180. · Zbl 0177.53301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.