×

On Large Eddy Simulation and Variational Multiscale Methods in the numerical simulation of turbulent incompressible flows. (English) Zbl 1164.76348

Summary: Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics  (CFD). In general, Direct Numerical Simulation  (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these models, the analysis of commutation errors in LES models as well as other results from mathematical analysis.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F02 Fundamentals of turbulence
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Adams, R. A.; Fournier, J. J. F., Sobolev Spaces (2003), New York: Academic Press, New York · Zbl 1098.46001
[2] Aldama, A. A., Filtering Techniques for Turbulent Flow Simulation, Lecture Notes in Engineering (1990), Berlin: Springer-Verlag, Berlin · Zbl 0724.76002
[3] L. C. Berselli, C. R. Grisanti, and V. John: On commutation errors in the derivation of the space averaged Navier-Stokes equations. Preprint 12. Università di Pisa, Dipartimento di Matematica Applicata “U. Dini”, 2004.
[4] Berselli, L. C.; Iliescu, T.; Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows (2006), Berlin: Springer-Verlag, Berlin · Zbl 1089.76002
[5] L. C. Berselli, V. John: Asymptotic behavior of commutation errors and the divergence of the Reynolds stress tensor near the wall in the turbulent channel flow. Math. Methods Appl. Sci. (2006). In press. · Zbl 1370.76065
[6] Clark, R. A.; Ferziger, J. H.; Reynolds, W. C., Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech., 91, 1-16 (1979) · Zbl 0394.76052
[7] Collis, S. S., Monitoring unresolved scales in multiscale turbulence modeling, Physics of Fluids, 13, 1800-1806 (2001) · Zbl 1184.76110
[8] Davidson, P. A., Turbulence. An Introduction for Scientists and Engineers (2004), Oxford: Oxford University Press, Oxford · Zbl 1061.76001
[9] Dunca, A.; John, V.; Layton, W. J.; Heywood, J. G.; Galdi, G. P.; Rannacher, R., The commutation error of the space averaged Navier-Stokes equations on a bounded domain, Contributions to Current Challenges in Mathematical Fluid Mechanics, 53-78 (2004), Basel: Birkhäuser-Verlag, Basel · Zbl 1096.35101
[10] C. L. Fefferman: Existence & smoothness of the Navier-Stokes equations. http://www.claymath.org/millennium/Navier_Stokes Equations/ (2000).
[11] Fischer, P.; Iliescu, T., Large eddy simulation of turbulent channel ows by the rational LES model, Phys. Fluids, 15, 3036-3047 (2003) · Zbl 1186.76174
[12] Fischer, P.; Iliescu, T., Backscatter in the rational LES model, Comput. Fluids, 33, 783-790 (2004) · Zbl 1053.76032
[13] Folland, G. B., Introduction to Partial Differential Equations, Mathematical Notes (1995), Princeton: Princeton University Press, Princeton · Zbl 0841.35001
[14] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems, Springer Tracts in Natural Philosophy (1994), New York: Springer-Verlag, New York · Zbl 0949.35004
[15] Galdi, G. P.; Galdi, G. P.; Heywood, J. G.; Rannacher, R., An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid Dynamics, 1-70 (2000), Basel: Birkhäuser-Verlag, Basel · Zbl 1108.35133
[16] Galdi, G. P.; Layton, W. J., Approximation of the larger eddies in uid motion. II: A model for space-ltered flow, Math. Models Methods Appl. Sci., 10, 343-350 (2000) · Zbl 1077.76522
[17] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760-1765 (1991) · Zbl 0825.76334
[18] V. Gravemeier: The variational multiscale method for laminar and turbulent incompressible flow. PhD. Thesis. Institute of Structural Mechanics, University of Stuttgart, 2003. · Zbl 1177.76341
[19] Gravemeier, V.; Wall, W. A.; Ramm, E., A three-level-nite element method for the instationary incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 193, 1323-1366 (2004) · Zbl 1085.76038
[20] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN, Math. Model. Numer. Anal., 33, 1293-1316 (1999) · Zbl 0946.65112
[21] Guermond, J.-L.; Oden, J. T.; Prudhomme, S., Mathematical perspectives on large eddy simulation models for turbulent flows, J. Math. Fluid Mech., 6, 194-248 (2004) · Zbl 1094.76030
[22] Hörmander, L., The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis (1990), Berlin-Heidelberg-New York: Springer-Verlag, Berlin-Heidelberg-New York · Zbl 0712.35001
[23] Hughes, T. J. R.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59 (2000) · Zbl 0998.76040
[24] Hughes, T. J. R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044
[25] Hughes, T. J. R.; Mazzei, L.; Oberai, A. A.; Wray, A. A., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13, 505-512 (2001) · Zbl 1184.76236
[26] Hughes, T. J. R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. Fluids, 13, 1784-1799 (2001) · Zbl 1184.76237
[27] Iliescu, T.; John, V.; Layton, W. J.; Matthies, G.; Tobiska, L., A numerical study of a class of LES models, Int. J. Comput. Fluid Dyn., 17, 75-85 (2003) · Zbl 1148.76327
[28] Iliescu, T.; Layton, W. J., Approximating the larger eddies in fluid motion. III: The Boussinesq model for turbulent uctuations, An. Stiin. Univ. Al. I. Cuza Iasi, ser. Noua, Mat., 44, 245-261 (1998) · Zbl 1078.76553
[29] John, V., Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models, Lecture Notes in Computational Science and Engineering (2004), Berlin: Springer-Verlag, Berlin · Zbl 1035.76001
[30] John, V., An assessment of two models for the subgrid scale tensor in the rational LES model, J. Comput. Appl. Math., 173, 57-80 (2005) · Zbl 1107.76040
[31] John, V.; Kaya, S., A finite element variational multiscale method for the Navier-Stokes equations, SIAM J. Sci. Comput., 26, 1485-1503 (2005) · Zbl 1073.76054
[32] V. John, S. Kaya: Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. Adv. Comp. Math. (2006). In press. · Zbl 1126.76030
[33] John, V.; Kaya, S.; Layton, W., A two-level variational multiscale method for convection-dominated convection-diffusion equations, Comput. Methods Appl. Mech. Eng., 195, 4594-4603 (2006) · Zbl 1124.76028
[34] John, V.; Layton, W. J., Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal., 40, 995-1020 (2002) · Zbl 1026.76028
[35] S. Kaya, W. J. Layton: Subgrid-scale eddy viscosity models are variational multiscale methods. Technical Report TR-MATH 03-05. University of Pittsburgh, 2003.
[36] Kaya, S.; Riviere, B., A discontinuous subgrid eddy viscosity method for the time dependent Navier-Stokes equations, SIAM J. Numer. Anal., 43, 1572-1595 (2005) · Zbl 1096.76026
[37] Kolmogoroff, A. N., The local structure of turbulence in incompressible viscous uid for very large Reynolds numbers, C. R. (Dokl). Akad. Nauk URSS, 30, 301-305 (1941) · JFM 67.0850.06
[38] Kraichnan, R. H., Inertial ranges in two dimensional turbulence, Phys. Fluids, 10, 1417-1423 (1967)
[39] Ladyzhenskaya, O. A., New equations for the description of motion of viscous incompressible uids and solvability in the large of boundary value problems for them, Tr. Mat. Inst. Steklova, 102, 85-104 (1967) · Zbl 0202.37802
[40] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics. Vol. 6 of Course of Theoretical Physics (1987), Oxford: Pergamon Press, Oxford
[41] Layton, W. J., A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133, 147-157 (2002) · Zbl 1024.76026
[42] Leonard, A., Energy cascade in large eddy simulation of turbulent fluid flows, Adv. Geophys., 18A, 237-248 (1974)
[43] M. Lesieur: Turbulence in Fluids. Fluid Mechanics and Its Applications, Vol. 40. Kluwer Academic Publishers, 1997, 3rd edition. · Zbl 0876.76002
[44] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 633-635 (1992)
[45] Mohammadi, B.; Pironneau, O., Analysis of the K-Epsilon Turbulence Model (1994), New York: John Wiley & Sons, New York
[46] Nikitin, N. V.; Nicoud, F.; Wasistho, B.; Squires, K. D.; Spalart, P. R., An approach to wall modeling in large-eddy simulation, Phys. Fluids, 12, 1629-1632 (2000) · Zbl 1184.76393
[47] Piomelli, U.; Balaras, E., Wall-layer models for large eddy simulation, Annu. Rev. Fluid Mech., 34, 349-374 (2002) · Zbl 1006.76041
[48] Pope, S. B., Turbulent Flows (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0966.76002
[49] Richardson, L. F., Weather Prediction by Numerical Process (1922), Cambridge: Cambridge University Press, Cambridge · JFM 48.0629.07
[50] Rudin, W., Functional Analysis. International Series in Pure and Applied Mathematics (1991), New York: McGraw-Hill, New York · Zbl 0867.46001
[51] Sagaut, P., Large Eddy Simulation for Incompressible Flows, An Introduction (2002), Berlin: Springer-Verlag, Berlin
[52] Schlichting, H., Boundary-Layer Theory (1979), New York: McGraw-Hill, New York · Zbl 0434.76027
[53] Sohr, H., The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birhäuser Advanced Texts (2001), Basel: Birkhäuser-Verlag, Basel · Zbl 0983.35004
[54] A. Świerczewska: Mathematical analysis of large eddy simulation of turbulent flows. PhD. Thesis. TU Darmstadt, 2004. · Zbl 1081.76002
[55] F. van der Bos, B. J. Geurts: Commutator errors in the-ltering approach to large-eddy simulation. Physics of Fluids 17 (2005). · Zbl 1187.76536
[56] van Driest, E. R., On turbulent ow near a wall, J. Aeronaut. Sci., 23, 1007-1011 (1956) · Zbl 0073.20802
[57] Zhang, Y.; Street, R. L.; Koseff, J. R., A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows, Phys. Fluids A, 5, 3186-3196 (1993) · Zbl 0925.76242
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.