zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of collective decoherence and thermalization. (English) Zbl 1164.82005
The paper under review is concerned with the analysis of the dynamics of a system of spins collectively coupled to a thermal environment represented by the usual Fock space model. The authors prove that if the coupling is sufficiently weak and the form factors appearing in the Hamiltonian describing the interaction satisfy certain natural analyticity conditions then the decoherence rates appearing in the convergence to the equilibrium of the density matrix of a spin system can be described explicitly without referring to the standard in quantum probability weak coupling approximation [see {\it E. B. Davies}, Comm. Math. Phys. 39, 91--110 (1974; Zbl 0294.60080)]. The proofs are based on the spectral deformation method, developed by the authors in their earlier work [see Ann. Phys. 323, No. 2, 373--412 (2008; Zbl 1201.81083) and references therein].

82C10Quantum dynamics and nonequilibrium statistical mechanics (general)
81V80Applications of quantum theory to quantum optics
82C20Dynamic lattice systems and systems on graphs
Full Text: DOI arXiv
[1] Altepeter, J. B.; Hadley, P. G.; Wendelken, S. M.; Berglund, A. J.; Kwiat, P. G.: Phys. rev. Lett.. 92, No. 14, 147901 (2004)
[2] Ao, P.; Rammer, J.: Phys. rev. B. 43, 5397-5418 (1991)
[3] Araki, H.; Woods, E. J.: J. math. Phys.. 4, 637-662 (1963)
[4] Bach, V.; Fröhlich, J.; Sigal, I. M.: Adv. math.. 137, 205-298 (1998)
[5] Berman, G. P.; Kamenev, D. I.; Tsifrinovich, V. I.: Phys. rev. A. 71, 032346 (2005)
[6] Breuer, H. -P.; Petruccione, F.: The theory of open quantum systems. (2002) · Zbl 1053.81001
[7] Bratteli, O.; Robinson, D. W.: Operator algebras and quantum statistical mechanics. Parts I and II. (1987) · Zbl 0905.46046
[8] Davies, E. B.: Commun. math. Phys.. 39, 91 (1974)
[9] Davies, E. B.: Math. ann.. 219, 147-158 (1976)
[10] J. Dereziński, R. Früboes, Fermi golden rule and open quantum systems, in: Lecture Notes in Mathematics 1882, Springer, Berlin, 2006.
[11] Duan, L. -M.; Guo, G. -C.: Phys. lett. A. 243, 265-269 (1998)
[12] Fedorov, A.; Fedichkin, L.: J. phys. Condens. matter. 18, 3217-3228 (2006)
[13] Fröhlich, J.; Merkli, M.: Commun. math. Phys.. (2003)
[14] Jaks\breve{}ić, V.; Pillet, C. -A.: Commun. math. Phys.. 226, No. 1, 131-162 (2002)
[15] Jaks\breve{}ić, V.; Pillet, C. -A.: Commun. math. Phys.. 176, No. 3, 619-644 (1996)
[16] Jaks\breve{}ić, V.; Pillet, C. -A.: Ann. inst. Henri Poincaré. 67, No. 4, 425-445 (1997)
[17] Merkli, M.: J. math. Anal. appl.. 327, No. 1, 376-399 (2007)
[18] M. Merkli, The ideal quantum gas. Open quantum systems I, in: Lecture Notes in Math 1880, Springer, Berlin, 2006, pp. 183-233. · Zbl 1188.82009
[19] Merkli, M.; Mück, M.; Sigal, I. M.: J. funct. Anal.. 243, No. 1, 87-120 (2007)
[20] Merkli, M.; Mück, M.; Sigal, I. M.: Ann. henri Poincaré. 8, 1539-1593 (2007)
[21] Merkli, M.; Sigal, I. M.; Berman, G. P.: Phys. rev. Lett.. 98, No. 13, 130401 (2007)
[22] Nielsen, M. A.; Chuang, I. L.: Quantum computation and quantum information. (2000) · Zbl 1049.81015
[23] Palma, G. M.; Suominen, K. -A.; Ekert, A. K.: Proc. R. Soc. lond. A. 452, 567-584 (1996)
[24] J.P. Paz, A.J. Roncaglia, Dynamics of the entanglement between two oscillators in the same environment, preprint, 0801.0464v1 [quant-ph] 3 January 2008.
[25] Sorensen, A.; Duan, L. -M.; Cirac, J. I.; Zoller, P.: Nature. 409, No. 4, 63-66 (2001)
[26] Schlosshauer, M.: The frontiers collection. (2007)
[27] S. Utsunomiya, C.P. Master, Y. Yamamoto, Algorithm-Based Analysis of Collective Decoherence in Quantum Computation, quant-ph/0408162v1, 2004.