×

zbMATH — the first resource for mathematics

Uncertain input data problems and the worst scenario method. (English) Zbl 1164.93354
Summary: An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.

MSC:
93C25 Control/observation systems in abstract spaces
93C41 Control/observation systems with incomplete information
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74K20 Plates
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] I. Babuška, F. Nobile, R. Tempone: Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101 (2005), 185–219. · Zbl 1082.65115
[2] Y. Ben-Haim: Information-Gap Decision Theory: Decisions Under Severe Uncertainty. Academic Press, San Diego, 2001. · Zbl 0985.91013
[3] Y. Ben-Haim, I. Elishakoff: Convex Models of Uncertainties in Applied Mechanics. Elsevier, Amsterdam, 1990.
[4] A. Bernardini: What are the random and fuzzy sets and how to use them for uncertainty modeling in engineering systems? In: CISM Courses and Lectures No. 388 (I. Elishakoff, ed.). Springer-Verlag, Wien, 1999.
[5] B.V. Bulgakov: Fehleranhäufung bei Kreiselapparaten. Ingenieur-Archiv 11 (1940), 461–469. · JFM 66.0996.03
[6] J. Chleboun: Reliable solution for a 1D quasilinear elliptic equation with uncertain coefficients. J. Math. Anal. Appl. 234 (1999), 514–528. · Zbl 0944.35027
[7] J. Chleboun: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: Sensitivity analysis and numerical examples. Nonlinear Anal., Theory Methods Appl. 44 (2001), 375–388. · Zbl 1002.35041
[8] J. Chleboun: On fuzzy input data and the worst scenario method. Appl. Math. 48 (2003), 487–496. · Zbl 1099.90081
[9] J. Chleboun, P. Kocna: Isotope selective nondispersive infrared spectrometry can compete with isotope ratio mass spectrometry in cumulative 13CO2 breath tests: Assessment of accuracy. Klin. Biochem. Metab. 13 (2005), 92–97.
[10] E. J. Haug, K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando, 1986. · Zbl 0618.73106
[11] I. Hlaváček: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447–466.l · Zbl 0870.65095
[12] I. Hlaváček: Reliable solutions of elliptic boundary value problems with respect to uncertain data. Proceedings of the WCNA-96. Nonlin. Anal., Theory Methods Appl. 30 (1997), 3879–3890. · Zbl 0896.35034
[13] I. Hlaváček: Reliable solution of a quasilinear nonponential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997), 452–466. · Zbl 0919.35047
[14] I. Hlaváček: Reliable solution of linear parabolic problems with respect to uncertain coefficients. ZAMM, Z. Angew. Math. Mech. 79 (1999), 291–301. · Zbl 0928.35016
[15] I. Hlaváček: Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function. Appl. Math. 43 (1998), 223–237. · Zbl 1042.74533
[16] I. Hlaváček: Reliable solution of a Signorini contact problem with friction, considering uncertain data. Numer. Linear Algebra Appl. 6 (1999), 411–434. · Zbl 1016.74051
[17] I. Hlaváček: Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function. Math. Models Methods Appl. Sci. 11 (2001), 855–865. · Zbl 1037.74028
[18] I. Hlaváček: Reliable solution of a perfect plastic problem with uncertain stress-strain law and yield function. SIAM J. Numer. Anal. 39 (2001), 1539–1555. · Zbl 1014.74015
[19] I. Hlaváček: Worst scenario approach for elastoplasticity with hardening and uncertain input data. ZAMM, Z. Angew. Math. Mech. 82 (2002), 671–684. · Zbl 1099.74505
[20] I. Hlaváček: Reliable solution in strain space of elastoplastic problems with isotropic hardening and uncertain input data. Math. Models Methods Appl. Sci. 12 (2002), 1337–1357. · Zbl 1027.74008
[21] I. Hlaváček: Post-buckling range of plates in axial compression with uncertain initial imperfections. Appl. Math. 47 (2002), 25–44. · Zbl 1090.74579
[22] I. Hlaváček: Buckling of a Timoshenko beam on elastic foundation with uncertain input data. IMA J. Appl. Math. 68 (2003), 185–204. · Zbl 1037.74018
[23] I. Hlaváček: Plate bending problems with uncertain input data. I. Classical problems. Submitted.
[24] I. Hlaváček, J. Chleboun: Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor. Comput. Methods Appl. Mech. Eng. 190 (2000), 903–918. · Zbl 0971.74041
[25] I. Hlaváček, J. Chleboun, and I. Babuška: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004.
[26] I. Hlaváček, J. Lovíšek: Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data. Appl. Math. (Warsaw) 28 (2001), 407–426; Approximate optimal design and worst scenario problems. Appl. Math. (Warsaw) 29 (2002), 75–95. · Zbl 1042.49036
[27] I. Hlaváček, M. Křížek, and J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189. · Zbl 0802.65113
[28] I. Hlaváček, J. Lovíšek: Semi-coercive variational inequalities with uncertain input data. Applications to shallow shells. Math. Models Methods Appl. Sci. 15 (2005), 273–299. · Zbl 1071.49006
[29] I. Hlaváček, J. Nedoma: Reliable solution of a unilateral contact problem with friction and uncertain input data in thermoelasticity. Math. Comput. Simul. 67 (2005), 559–580. · Zbl 1290.74030
[30] I. Hlaváček: Unilateral contact with Coulomb friction and uncertain input data. Numer. Funct. Anal. Optimization 24 (2003), 509–530. · Zbl 1049.49007
[31] I. Hlaváček, J. Plešek, and D. Gabriel: Validation and sensitivity study of an elastoplastic problem using the worst scenario method. Comput. Methods Appl. Mech. Eng. 195 (2006), 763–774. · Zbl 1090.74013
[32] V. Krištof: An elliptic problem with a nonlinear Newton boundary condition and a double uncertainty. PhD. Thesis. Palacký University, Olomouc, 2004. (In Czech.)
[33] V. G. Litvinov: Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics. Birkhäuser-Verlag, Berlin, 2000. · Zbl 0947.49001
[34] J. Lovíšek: Reliable solution of parabolic obstacle problems with respect to uncertain data. Appl. Math. 48 (2003), 321–351. · Zbl 1099.35054
[35] L. Nechvátal: Worst scenario method in homogenization. Linear case. Appl. Math. 51 (2006), 263–294. · Zbl 1164.35317
[36] T. Roubíček: Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter, Berlin, 1997.
[37] M. Tužilová: Reliable solutions of a thermoelastic beam model with uncertain coefficients. PhD. Thesis. Palacký University, Olomouc, 2003. (In Czech.)
[38] H.-J. Zimmermann: Fuzzy Set Theory–and Its Applications. Kluwer Academic Publishers, Boston, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.