## On a mixed Littlewood conjecture for quadratic numbers.(English)Zbl 1165.11325

From the introduction: In a joint paper, with O. Teulié [Monatsh. Math. 143, No. 3, 229–245 (2004; Zbl 1162.11361)], we have considered the following problem. Let $${\mathcal B}= (b_k)_{k\geq1}$$ be a sequence of integers greater than 1. Consider the sequence $$(r_n)_{n\geq0}$$, where $$r_0=1$$ and $$r_n= \prod_{0<k\leq n}b_k$$ for $$n>0$$. For $$q\in\mathbb Z$$, set $$w_{\mathcal B}(q)= \sup\{n\in\mathbb N$$; $$q\in r_n\mathbb Z\}$$ and $$|q|_{\mathcal B}= \inf\{1/r_n$$; $$q\in r_n\mathbb Z\}$$.
Note that $$|.|_{\mathcal B}$$ is not necessarily an absolute value, but when $${\mathcal B}$$ is the constant sequence $$p$$, where $$p$$ is a prime number, then $$|.|_{\mathcal B}$$ is the usual $$p$$-adic value. For $$x\in\mathbb R$$, we denote by $$\{x\}$$ the number in $$[-1/2,1/2[$$ such that $$x-\{x\}\in\mathbb Z$$. As usual, we put $$\|x\|= |\{x\}|$$.
Let $$\alpha$$ be a real number. Given a positive integer $$M$$, Dirichlet’s theorem asserts that for any $$n$$, there exists an integer $$q$$, with $$0<q\leq Mr_n$$, satisfying simultaneously the approximation condition $$\|q\|< 1/M$$ and the divisibility condition $$r_n|q$$, i.e., $$|q|_{\mathcal B}\leq 1/r_n$$. Indeed, it is enough to apply Dirichlet’s theorem to the number $$r_n\alpha$$. We thus find positive integers $$q$$ with
$q\|q\alpha\|\,|q|_{\mathcal B}<1.$
By analogy with Littlewood’s conjecture, we ask whether
$\inf_{q\in\mathbb N^*} q\|q\alpha\|\,|q|_{\mathcal B}=0 \tag{1}$
holds.
We do not know whether (1) is satisfied for any real number $$\alpha$$. In (loc. cit.), we have proved that if we assume that the sequence $${\mathcal B}= (b_k)_{k\geq1}$$ is bounded, (1) is true for every quadratic number $$\alpha$$. Here we prove:
Theorem. Assume that the sequence $${\mathcal B}$$ is bounded. Let $$\alpha$$ be a real quadratic number, and let $${\mathcal S}$$ be a set of integers $$q>1$$ with
$\|q\alpha\|\ll 1/q.\tag{2}$
Then there exists a constant $$\lambda= \lambda({\mathcal S})$$ such that
$|q|_{\mathcal B}\gg \frac{1}{(\ln q)^\lambda}, \tag{4}$
for any $$q\in{\mathcal S}$$.
One may expect that (4) holds for any $$\lambda>1$$, but we are not able to prove this. We do not even know whether there exists a real number $$\lambda$$ for which (4) holds for any set $${\mathcal S}$$ of integers $$q>1$$ satisfying (2). Indeed, Theorem 1.2 does not ensure that $$\sup_{\mathcal S} \lambda({\mathcal S})<+\infty$$.

### MSC:

 11J13 Simultaneous homogeneous approximation, linear forms 11J61 Approximation in non-Archimedean valuations

Zbl 1162.11361
Full Text:

### References:

  M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209-270. · Zbl 1010.11020  Y. Bugeaud, M. Laurent, Minoration effective de la distance $$p$$-adique entre puissances de nombres algébriques. J. Number Theory 61 (1996), 311-342. · Zbl 0870.11045  B. de Mathan, Linear forms in logarithms and simultaneous Diophantine approximation. (To appear). · Zbl 1195.11086  B. de Mathan, Approximations diophantiennes dans un corps local. Bull. Soc. math. France, Mémoire 21 (1970). · Zbl 0221.10037  B. de Mathan, O. Teulié, Problèmes diophantiens simultanés. Monatshefte Math. 143 (2004), 229-245. · Zbl 1162.11361  D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957), 125-131. · Zbl 0079.27401  L. G. Peck, Simultaneous rational approximations to algebraic numbers. Bull. Amer. Math. Soc. 67 (1961), 197-201. · Zbl 0098.26302  K. Yu, $$p$$-adic logarithmic forms and group varieties II. Acta Arith. 89 (1999), 337-378. · Zbl 0928.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.