Comparing the sheaves of overconvergent isocrystals. (Comparaison des facteurs duaux des isocristaux surconvergents.) (English) Zbl 1165.14305

Summary: This article fits within the general program of defining a good category of \(p\)-adic coefficients, a program started by Berthelot, who introduced the notion of arithmetic \(\mathcal D\)-modules [cf. for example P. Berthelot, Astérisque No. 279, 1–80 (2002; Zbl 1098.14010)]. The author aims to prove in a series of papers that certain categories of \(\mathcal D\)-modules (the holonomic or overholonomic ones) are stable under five of Grothendieck’s six operations. The article under review is part of that series.
Let \(\mathfrak{X}\) be a smooth formal scheme, \(\text{sp}\) the specialization map, \(Z\) a divisor on the special fiber \(X\) of \(\mathfrak{X}\), \(E\) an isocrystal on \(X\setminus Z\) overconvergent along \(Z\), \(E^\vee\) its dual and \(\mathbb{D}_Z^\dagger\) the \(\mathcal D\)-module dual. The main result is that there is an isomorphism compatible with the Frobenius map: \[ \mathbb{D}_Z^\dagger(\mathcal O_{\mathfrak{X}} ({}^\dagger Z)_{\mathbb{Q}}) \otimes_{\mathcal O_{\mathfrak{X}} ({}^\dagger Z)_{\mathbb{Q}}} \text{sp}_*(E^\vee) \simeq\mathbb{D}_Z^\dagger(\text{sp}_*(E)). \] This result, which gives a \(\mathcal{D}\)-module theoretical interpretation of the dual of an overconvergent isocrystal, is a \(p\)-adic analogue of a characteristic zero result of Berthelot.


14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F30 \(p\)-adic cohomology, crystalline cohomology
32C38 Sheaves of differential operators and their modules, \(D\)-modules


Zbl 1098.14010
Full Text: EuDML Link


[1] Y. ANDRÉ - F. BALDASSARRI, De Rham cohomology of differential modules on algebraic varieties., Progress in Mathematics (Boston, Mass.), 189. Basel: Birkhäuser. vii, 214 p., 2001 (English). Zbl0995.14003 MR1807281 · Zbl 0995.14003
[2] P. BERTHELOT, <Cohomologie rigide et théorie des D-modules>, p-adic analysis (Trento, 1989), Springer, Berlin (1990), pp. 80-124. Zbl0722.14008 MR1094848 · Zbl 0722.14008
[3] P. BERTHELOT, D-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 2, pp. 185-272. Zbl0886.14004 MR1373933 · Zbl 0886.14004
[4] P. BERTHELOT, D-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) (2000), no. 81, pp. vi+136. Zbl0948.14017 MR1775613 · Zbl 0948.14017
[5] P. BERTHELOT, Introduction à la théorie arithmétique des D-modules, Astérisque (2002), no. 279, pp. 1-80, Cohomologies p-adiques et applications arithmétiques, II. [BGK+ 87] A. BOREL, - P.-P. GRIVEL - B. KAUP - A. HAEFLIGER - B. MALGRANGE - F. EHLERS, Algebraic D- modules, Academic Press Inc., Boston, MA (1987). Zbl1098.14010 MR1922828 · Zbl 1098.14010
[6] D. CARO, D-modules arithmétiques surholonomes, Prépublication.
[7] D. CARO, Dévissages des F-complexes de D-modules arithmétiques en F-isocristaux surconvergents, Prépublication. Zbl1114.14011 · Zbl 1114.14011
[8] D. CARO, Fonctions L associées aux D-modules arithmétiques. Cas des courbes, À paraître dans Compositio Mathematica. Zbl1167.14012 · Zbl 1167.14012
[9] D. CARO, Cohérence différentielle des F-isocristaux unités, C. R. Math. Acad. Sci. Paris 338 (2004), no. 2, pp. 145-150. Zbl1047.14009 MR2038284 · Zbl 1047.14009
[10] D. CARO, D-modules arithmétiques surcohérents. Application aux fonctions L, Ann. Inst. Fourier, Grenoble 54 (2004), no. 6, pp. 1943-1996. Zbl1129.14030 MR2134230 · Zbl 1129.14030
[11] D. CARO, Surcohérence: holonomie des F-isocristaux unités, Prépublication de l’Université de Sydney (2004).
[12] R. HARTSHORNE, Residues and duality (Springer-Verlag, Berlin, 1966). MR222093
[13] B. Le STUM - A. QUIRÓS, Transversal crystals of finite level, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 1, pp. 69-100. Zbl0883.14006 MR1437179 · Zbl 0883.14006
[14] D. MEREDITH, Weak formal schemes, Nagoya Math. J. 45 (1972), p. 1-38. Zbl0207.51502 MR330167 · Zbl 0207.51502
[15] Z. MEBKHOUT - L. NARVÁEZ-MACARRO, Sur les coefficients de de Rham-Grothendieck des variétés algébriques, p-adic analysis (Trento, 1989), Lecture Notes in Math., vol. 1454 (Springer, Berlin, 1990), p. 267-308. Zbl0727.14011 MR1094858 · Zbl 0727.14011
[16] C. NOOT-HUYGHE, Finitude de la dimension homologique d’algèbres d’opérateurs différentiels faiblement complètes et à coefficients surconvergents, A paraître au Journal of Algebra (2004). Zbl1111.14006 · Zbl 1111.14006
[17] C. NOOT-HUYGHE, Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narváez-Macarro, J. Algebraic Geom. 12 (2003), no. 1, pp. 147-199. Zbl1053.14015 MR1948688 · Zbl 1053.14015
[18] Théorie des intersections et théorème de Riemann-Roch (SpringerVerlag, Berlin, 1971), Séminaire de Géométrie Algégrique du BoisMarie 1966-1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225. Zbl0218.14001 MR354655 · Zbl 0218.14001
[19] Théorie des topos et cohomologie étale des schémas. Tome 2, SpringerVerlag, Berlin, 1972, Séminaire de Géométrie Algébrique du BoisMarie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. SaintDonat, Lecture Notes in Mathematics, Vol. 270. Zbl0237.00012 MR354653 · Zbl 0237.00012
[20] N. TSUZUKI, Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals, Duke Math. J., 111 (2002), no. 3, p. 385-418. Zbl1055.14022 MR1885826 · Zbl 1055.14022
[21] A. VIRRION, Dualité locale et holonomie pour les D-modules arithmétiques, Bull. Soc. Math. France 128 (2000), no. 1, pp. 1-68. Zbl0955.14015 MR1765829 · Zbl 0955.14015
[22] A. VIRRION, Trace et dualité relative pour les D-modules arithmétiques, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin (2004), pp. 1039-1112. Zbl1083.14017 MR2099095 · Zbl 1083.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.