zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Diversity of traveling wave solutions in delayed cellular neural networks. (English) Zbl 1165.34393
Summary: This work investigates the diversity of traveling wave solutions for a class of delayed cellular neural networks on the one-dimensional integer lattice $\Bbb{Z}^1$. The dynamics of a given cell is characterized by instantaneous self-feedback and neighborhood interaction with distributed delay due to, for example, finite switching speed and finite velocity of signal transmission. Applying the monotone iteration scheme, we can deduce the existence of monotone traveling wave solutions provided the templates satisfy the so-called quasi-monotonicity condition. We then consider two special cases of the delayed cellular neural network in which each cell interacts only with either the nearest $m$ left neighbors or the nearest $m$ right neighbors. For the former case, we can directly figure out the analytic solution in an explicit form by the method of step with the help of the characteristic function and then prove that, in addition to the existence of monotonic traveling wave solutions, for certaintemplates there exist nonmonotonic traveling wave solutions such as camel-like waves with many critical points. For the latter case, employing the comparison arguments repeatedly, we can clarify the deformation of traveling wave solutions with respect to the wave speed. More specifically, we can describe the transition of profiles from monotonicity, damped oscillation, periodicity, unboundedness and back to monotonicity as the wave speed is varied. Some numerical results are also given to demonstrate the theoretical analysis.

34K10Boundary value problems for functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K07Theoretical approximation of solutions of functional-differential equations
37L60Lattice dynamics (infinite-dimensional dissipative systems)
Full Text: DOI