Multiplication and composition operators on Lorentz–Bochner spaces. (English) Zbl 1165.47023

Let \((\Omega,{\mathcal A},\mu)\) be a \(\sigma\)-finite measure space. Let \(X\) be a Banach space and \(L_{p\,q}(\Omega,X)\) denote the Lorentz–Bochner space, \({\mathcal B}(X)\) the class of all bounded operators on \(X\). For a strongly measurable function \(u:\Omega\to{\mathcal B}(X)\), the multiplication transform \(M_u:L_{p\,q}(\Omega,\, X) \to L(\Omega,X)\) is defined as \((M_uf)(\omega)=u(\omega)(f(\omega))\) for all \(\omega\in\Omega\), where \(L(\Omega,X)\) is the space of all strongly measurable functions. For a non-singular measurable transformation \(T:\Omega\to\Omega\), the composition transformation \(C_T:L_{pq} (\Omega,X)\to L(\Omega,X)\) is given by \((C_Tf)(\omega)=f(T(\omega))\) for all \(\omega\in\Omega\).
In this paper, the authors study the multiplication and composition operators and discuss some of their properties, such as invertibility, range, compactness and spectrum.


47B38 Linear operators on function spaces (general)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47B33 Linear composition operators
Full Text: Euclid


[1] M.B. Abrahamse: Multiplication operators ; in Hilbert Space Operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977), Lecture Notes in Math. 693 , Springer, Berlin, 1978, 17–36. · Zbl 0411.47021
[2] R.A. Adams and J.J.F. Fournier: Sobolev spaces, second edition, Pure and applied math. series. 140 , Academic Press, New York, 2003. · Zbl 1098.46001
[3] C. Bennett and R. Sharpley: Interpolation of Operators, Pure and Applied Mathematics 129 , Academic Press, Boston, MA, 1988. · Zbl 0647.46057
[4] O. Blasco and P. Gregori: Lorentz spaces of vector-valued measures , J. London Math. Soc. (2) 67 (2003), 739–751. · Zbl 1049.46021
[5] J. Diestel and J.J. Uhl, Jr.: Vector Measures, Mathematical Surveys 15 , Amer. Math. Soc., Providence, RI, 1977. · Zbl 0369.46039
[6] N.E. Gretsky and J.J. Uhl, Jr.: Bounded linear operators on Banach function spaces of vector-valued functions , Trans. Amer. Math. Soc. 167 (1972), 263–277. · Zbl 0238.46038
[7] H. Hudzik, R. Kumar and R. Kumar: Matrix multiplication operators on Banach function spaces , Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 71–81. · Zbl 1104.47035
[8] R.A. Hunt: On \(L(p,q)\) spaces , Enseignement Math. (2) 12 (1966), 249–276.
[9] B.S. Komal and S. Gupta: Multiplication operators between Orlicz spaces , Integral Equations Operator Theory 41 (2001), 324–330. · Zbl 0994.47032
[10] A. Kufner, O. John and S. Fučí k: Function Spaces, Noordhoff, Leyden, 1977. · Zbl 0364.46022
[11] R. Kumar and R. Kumar: Composition operators on Banach function spaces , Proc. Amer. Math. Soc. 133 (2005), 2109–2118 · Zbl 1087.47030
[12] G.G. Lorentz: Some new functional spaces , Ann. of Math. (2) 51 (1950), 37–55. JSTOR: · Zbl 0035.35602
[13] E. Nakai: Pointwise multipliers on the Lorentz spaces , Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 45 (1996), 1–7.
[14] R. O’Neil: Convolution operators and \(L(p,q)\) spaces , Duke Math. J. 30 (1963), 129–142. · Zbl 0178.47701
[15] W.C. Ridge: Spectrum of a composition operator , Proc. Amer. Math. Soc. 37 (1973), 121–127. JSTOR: · Zbl 0299.47003
[16] R.K. Singh and J.S. Manhas: Composition Operators on Function Spaces, North-Holland Mathematics Studies 179 , North-Holland, Amsterdam, 1993. · Zbl 0788.47021
[17] E.M. Stein and G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. · Zbl 0232.42007
[18] H. Takagi and K. Yokouchi: Multiplication and composition operators between two \(L^p\)-spaces ; in Function Spaces (Edwardsville, IL, 1998), Contemp. Math. 232 , Amer. Math. Soc., Providence, RI, 1999, 321–338. · Zbl 0939.47028
[19] H. Takagi: Fredholm weighted composition operators , Integral Equations Operator Theory 16 (1993), 267–276. · Zbl 0783.47048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.