×

Second-order degenerate identification differential problems. (English) Zbl 1165.49013

Summary: We are concerned with second-order degenerate identification problems related to closed operators in a Banach space. Suitable hypotheses on the involved operators are made in order to reduce the given problem to a solvable first-order problem of (weak) parabolic type. Some applications to partial differential equations are given to show the fullness of our abstract results.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49J20 Existence theories for optimal control problems involving partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Al Horani, M.H., Favini, A.: An identification problem for first-order degenerate differential equations. J. Optim. Theory Appl. 130, 41–60 (2006) · Zbl 1129.65044
[2] Al Horani, M.H., Favini, A.: Degenerate first order problems in Banach spaces. In: Favini, A., Lorenzi, A. (eds.) Differential Equations Inverse and Direct Problems, pp. 1–15. Taylor and Francis Group, Boca Raton (2006) · Zbl 1115.34012
[3] Lorenzi, A.: An Introduction to Identification Problems via Functional Analysis. Inverse and Ill-Posed Problems Series. VSP, Utrecht (2001)
[4] Asanov, A., Atamanov, E.R.: Nonclassical and Inverse Problems for Pseudoparabolic Equations. VSP, Utrecht (1997) · Zbl 0912.35155
[5] Prilepko, A., Orlowsky, D.G., Vasin, I.: Methods for Solving Inverse Problems in Mathematical Physics. Dekker, New York (2000)
[6] Favini, A., Lorenzi, A.: Identification problems for singular integro-differential equations of parabolic type I. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12, 303–328 (2005) · Zbl 1081.45006
[7] Favini, A., Lorenzi, A.: Identification problems for singular integro-differential equations of parabolic type II. Nonlinear Anal. T.M.A. 56, 879–904 (2004) · Zbl 1048.45009
[8] Favini, A., Lorenzi, A.: Singular integro-differential equations of parabolic type and inverse problems. Math. Models Methods Appl. Sci. 13, 1745–1766 (2003) · Zbl 1059.45010
[9] Lorenzi, A., Tanabe, H.: Inverse and direct problems for nonautonomous degenerate integrodifferential equations of parabolic type with Dirichlet boundary conditions. In: Favini, A., Lorenzi, A. (eds.) Differential Equations Inverse and Direct Problems, pp. 197–243. Taylor and Francis Group, Boca Raton (2006) · Zbl 1106.45302
[10] Guo, D.: Second-order integro-differential equations of Volterra type on unbounded domains in Banach Spaces. Nonlinear Anal. T.M.A. 41, 465–476 (2000) · Zbl 0959.45006
[11] Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Dekker, New York (1999) · Zbl 0913.34001
[12] Taira, K.: The theory of semigroups with weak singularity and its applications to partial differential equations. Tsukuba J. Math. 13, 513–562 (1989) · Zbl 0695.47031
[13] Al Horani, M.H., Favini, A.: Degenerate second-order identification problems in Banach spaces. J. Optim. Theory Appl. 120, 305–326 (2004) · Zbl 1048.93020
[14] Favini, A., Lorenzi, A., Tanabe, H., Yagi, A.: An L p -approach to singular linear parabolic equations in bounded domains. Osaka J. Math. 42, 385–406 (2005) · Zbl 1082.35073
[15] Yosida, K.: Functional Analysis. Springer, Berlin (1969) · Zbl 0152.32102
[16] Taira, K.: Un théorème d’existence e d’unicité des solutions pour des problèms aux limites non-elliptiques. J. Funct. Anal. 43, 166–192 (1981) · Zbl 0474.35045
[17] Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley–VCH, Berlin (2000) · Zbl 0958.35002
[18] von Wahl, W.: Lineare and semilineare parabolische Differentialgleichungen in Räumen hölderstetigen Funktionen. Abh. Math. Sem. Univ. Hamb. 43, 234–262 (1975) · Zbl 0324.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.