zbMATH — the first resource for mathematics

Constant mean curvature spheres in Riemannian manifolds. (English) Zbl 1165.53038
The authors show that there exist embedded spheres with large constant mean curvature in any compact Riemannian manifold \(M\). Specifically, they prove that there is a constant \(\rho_0 > 0\) and a smooth real valued function \[ \phi : M \times (0,\rho_0) \rightarrow {\mathbb R} \] such that, for all \(\rho \in (0, \rho_0)\), if \(p\) is a critical point of \(\phi(\cdot, \rho)\), then there exists an embedded hyper-surface \(S_{p,\rho}^\flat\) with mean curvature equal to \({m \over \rho}\) where \(m = \dim(M)\). \(S_{p,\rho}^\flat\) is obtained by deforming the geodesic sphere of radius \(\rho\) centered at \(p\). This result generalizes one due to R. Ye [Pac. J. Math. 147, No. 2, 381–396 (1991; Zbl 0722.53022)] who was able to construct such families of constant mean curvature spheres by deforming geodesic spheres centered at non-degenerate critical points of the scalar curvature function of \(M\). Unlike Ye’s result, the result of this paper applies even when all the critical points of the scalar curvature are degenerate, in particular, when \(M\) has constant scalar curvature.

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C20 Global Riemannian geometry, including pinching
Full Text: DOI
[1] Aubin T.: Some nonlinear Problems in Riemannian Geometry. Springer, Heidelberg (1998) · Zbl 0896.53003
[2] Berard P., Meyer D.: Inégalités isopérimétriques et applications. Ann. Sci. Éc. Norm. Supér., IV. Sér. 15, 513–541 (1982)
[3] Druet O.: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Am. Math. Soc. 130(8), 2351–2361 (2002) · Zbl 1067.53026 · doi:10.1090/S0002-9939-02-06355-4
[4] Gray A.: Tubes. Advanced Book Program. Addison-Wesley, Redwood City (1990)
[5] Kapouleas N.: Compact constant mean curvature surfaces in Euclidean three-space. J. Differ. Geom. 33(3), 683–715 (1991) · Zbl 0727.53063
[6] Lee J.M., Parker T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[7] Li Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2, 955–980 (1997) · Zbl 1023.35500
[8] Lusternik L., Shnirelman L.: Méthodes topologiques dans les problèmes variationnels. Hermann, Paris (1934)
[9] Nardulli, S.: Le profil isopérimétrique d’une variété Riemannienne compacte pour les petits volumes, Thèse de l’Université Paris 11 (2006). arXiv:0710.1849 and arXiv:0710.1396
[10] Ros A.: The isoperimetric problem. In: Hoffman, D. (eds) Global Theory of Minimal Surfaces, Clay Mathematics Proceedings, AMS, Providence (2005) · Zbl 1125.49034
[11] Schoen R., Yau S.T.: Lectures on Differential Geometry. International Press, New York (1994) · Zbl 0830.53001
[12] Takens F.: The minimal number of critical points of a function on a compact manifold and the Lusternic–Schnirelman category. Invent. Math. 6, 197–244 (1968) · Zbl 0198.56603 · doi:10.1007/BF01404825
[13] Ye R.: Foliation by constant mean curvature spheres. Pac. J. Math. 147(2), 381–396 (1991) · Zbl 0722.53022
[14] Willmore T.J.: Riemannian Geometry. Oxford University Press, NY (1993) · Zbl 0797.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.