×

zbMATH — the first resource for mathematics

Common fixed points of fuzzy maps. (English) Zbl 1165.54311
Summary: We prove common fixed point theorems for a pair of fuzzy mappings satisfying Edelstein, Alber and Guerr-Delabriere type contractive conditions in a metric linear space.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
47H10 Fixed-point theorems
47S40 Fuzzy operator theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Heilpern, S., Fuzzy mappings and fixed point theorems, J. math. anal. appl., 83, 566-569, (1981) · Zbl 0486.54006
[2] Bose, R.K.; Sahani, D., Fuzzy mappings and fixed point theorems, Fuzzy sets and systems, 21, 53-58, (1987) · Zbl 0609.54032
[3] Lee, B.S.; Cho, S.J., A fixed point theorem for contractive type fuzzy mappings, Fuzzy sets and systems, 61, 309-312, (1994) · Zbl 0831.54036
[4] Rashwan, R.A.; Ahmad, M.A., Common fixed point theorems for fuzzy mappings, Arch. math. (Brno), 38, 219-226, (2002) · Zbl 1068.54008
[5] Rhoades, B.E., A common fixed point theorem for sequence of fuzzy mappings, Int. J. math. math. sci., 8, 447-450, (1995) · Zbl 0840.47049
[6] Ko, H.M.; Tasi, Y.H., Fixed point theorems for localized property, Tamkang J. math., 8, 1, 81-85, (1977)
[7] Reich, S., Fixed points of contractive functions, Boll. unione mat. ital., 4, 5, 24-26, (1972) · Zbl 0249.54026
[8] Nadler, S.B., Multivalued contraction mappings, Pacific J. math., 30, 475-488, (1969) · Zbl 0187.45002
[9] Hu, T., Fixed point theorems for multivalued mappings, Canad. math. bull., 23, 193-197, (1980) · Zbl 0436.54037
[10] Edelstein, M., An extension of banach’s contraction principle, Proc. amer. math. soc., 12, 7-12, (1961) · Zbl 0096.17101
[11] Bailey, D.F., Some theorems on contractive mappings, J. lond. math. soc., 41, 101-106, (1996) · Zbl 0132.18805
[12] Beg, I.; Azam, A., Fixed points of multivalued locally contractive mappings, Boll. unione mat. ital. (4A), 7, 227-233, (1990) · Zbl 0717.54023
[13] Holmes, R.D., On fixed and periodic points under certain set of mappings, Canad. math. bull., 12, 813-822, (1969) · Zbl 0198.27801
[14] Hu, T.; Rosen, H., Locally contractive and expansive mappings, Proc. amer. math. soc., 86, 656-662, (1982) · Zbl 0519.54030
[15] Waters, C., A fixed point theorem for locally nonexpansive mappings in normed space, Proc. amer. math. soc., 97, 695-699, (1986) · Zbl 0622.47054
[16] Alber, Ya.I.; Guerr-Delabriere, S., Principle of weakly contractive maps in Hilbert spaces, (), 7-22 · Zbl 0897.47044
[17] Rhoades, B.E., Some theorems on weakly contractive maps, Nonlinear anal., 47, 4, 2683-2693, (2001) · Zbl 1042.47521
[18] Bae, S., Fixed point theorems for weakly contractive multivalued maps, J. math. anal. appl., 284, 690-697, (2003) · Zbl 1033.47038
[19] Beg, I.; Abbas, M., Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed point theory appl., 2006, 1-7, (2006), (Article ID 74503) · Zbl 1133.54024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.