zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability for stochastic neutral partial functional differential equations. (English) Zbl 1165.60024
Summary: We consider a class of stochastic neutral partial functional differential equations in a real separable Hilbert space. Some conditions on the existence and uniqueness of a mild solution of this class of equations and also the exponential stability of the moments of a mild solution as well as its sample paths are obtained. The known results in {\it T. E. Govindan} [Stochastics 77, 139--154 (2005; Zbl 1115.60064)], {\it K. Liu} and {\it A. Truman} [Statist. Probab. Lett. 50, 273--278 (2000; Zbl 0966.60059)] and {\it T. Taniguchi} [Stoch. Anal. Appl. 16, 965--975 (1998; Zbl 0911.60054); Stochastics 53, 41--52 (1995; Zbl 0854.60051)] are generalized and improved.

60H15Stochastic partial differential equations
93E15Stochastic stability
Full Text: DOI
[1] Caraballo, T.; Real, J.; Taniguchi, T.: The exponential stability of neutral stochastic delay partial differential equations, Discrete contin. Dyn. syst. 18, No. 2 -- 3, 295-313 (2007) · Zbl 1125.60059 · doi:10.3934/dcds.2007.18.295
[2] Da Prato, G.; Zabczyk, J.: Stochastic equations in infinite dimensions, (1992) · Zbl 0761.60052
[3] Datko, R.: Linear autonomous neutral differential equations in Banach spaces, J. differential equations 25, 258-274 (1977) · Zbl 0402.34066 · doi:10.1016/0022-0396(77)90204-2
[4] Fu, X.; Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear anal. 54, 215-227 (2003) · Zbl 1034.34096 · doi:10.1016/S0362-546X(03)00047-6
[5] Govindan, T. E.: Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics 77, 139-154 (2005) · Zbl 1115.60064 · doi:10.1080/10451120512331335181
[6] Hale, J. K.; Meyer, K. R.: A class of functional equations of neutral type, Mem. amer. Math. soc. 76, 1-65 (1967) · Zbl 0179.20501
[7] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[8] Kolmanovskii, V. B.; Nosov, V. R.: Stability of functional differential equations, (1986) · Zbl 0593.34070
[9] Kolmanovskii, V. B.; Nosov, V. R.: Stability of neutral-type functional differential equations, Nonlinear anal. 6, 873-910 (1982) · Zbl 0494.34052 · doi:10.1016/0362-546X(82)90009-8
[10] Liu, K.: Stability of infinite dimensional stochastic differential equations with applications, Pitman monogr. Surveys pure appl. Math. 135 (2006) · Zbl 1085.60003 · doi:10.1201/9781420034820
[11] Liu, K.: Uniform stability of autonomous linear stochastic functional differential equations in infinite dimensions, Stochastic process. Appl. 115, 1131-1165 (2005) · Zbl 1075.60078 · doi:10.1016/j.spa.2005.02.006
[12] Liu, K.; Xia, X.: On the exponential stability in mean square of neutral stochastic functional differential equations, Systems control lett. 37, 207-215 (1999) · Zbl 0948.93060 · doi:10.1016/S0167-6911(99)00021-3
[13] Liu, K.; Truman, A.: A note on almost sure exponential stability for stochastic partial functional differential equations, Statist. probab. Lett. 50, 273-278 (2000) · Zbl 0966.60059 · doi:10.1016/S0167-7152(00)00103-6
[14] Mao, X. R.: Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations, SIAM J. Math. anal. 28, 389-401 (1997) · Zbl 0876.60047 · doi:10.1137/S0036141095290835
[15] Mao, X. R.: Stochastic differential equations and applications, (1997) · Zbl 0892.60057
[16] Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Appl. math. Sci. 44 (1983) · Zbl 0516.47023
[17] Randjelović, J.; Janković, S.: On the pth moment exponential stability criteria of neutral stochastic functional differential equations, J. math. Anal. appl. 326, 266-280 (2007) · Zbl 1115.60065 · doi:10.1016/j.jmaa.2006.02.030
[18] Rodkina, A. E.: On existence and uniqueness of solution of stochastic differential equations with heredity, Stochastics 12, 187-200 (1984) · Zbl 0568.60062 · doi:10.1080/17442508408833300
[19] Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations, Stoch. anal. Appl. 16, 965-975 (1998) · Zbl 0911.60054 · doi:10.1080/07362999808809573
[20] Taniguchi, T.: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert spaces, Stochastics 53, 41-52 (1995) · Zbl 0854.60051