zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. (English) Zbl 1165.65027
The purpose of the paper is to introduce hybrid projection algorithms to find a common element of the set of common fixed points of two quasi-$\phi$-nonexpensive mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces.

MSC:
65J15Equations with nonlinear operators (numerical methods)
47H09Mappings defined by “shrinking” properties
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47J25Iterative procedures (nonlinear operator equations)
WorldCat.org
Full Text: DOI
References:
[1] Alber, Ya.I.; Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. math. J. 4, 39-54 (1994) · Zbl 0851.47043
[2] Alber, Ya.I.: Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15-50 (1996) · Zbl 0883.47083
[3] Butnariu, D.; Reich, S.; Zaslavski, A. J.: Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. appl. Anal. 7, 151-174 (2001) · Zbl 1010.47032 · doi:10.1515/JAA.2001.151
[4] Butnariu, D.; Reich, S.; Zaslavski, A. J.: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. funct. Anal. optim. 24, 489-508 (2003) · Zbl 1071.47052 · doi:10.1081/NFA-120023869
[5] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems, Math. student 63, 123-145 (1994) · Zbl 0888.49007
[6] Censor, Y.; Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37, 323-339 (1996) · Zbl 0883.47063 · doi:10.1080/02331939608844225
[7] Cioranescu, I.: Geometry of Banach spaces, duality mappings and nonlinear problems, (1990) · Zbl 0712.47043
[8] Ceng, L. C.; Yao, J. C.: Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Appl. math. Comput. 198, 729-741 (2008) · Zbl 1151.65058 · doi:10.1016/j.amc.2007.09.011
[9] Ceng, L. C.; Yao, J. C.: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. comput. Appl. math. 214, 186-201 (2008) · Zbl 1143.65049 · doi:10.1016/j.cam.2007.02.022
[10] Combettes, P. L.; Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces, J. nonlinear convex anal. 6, 117-136 (2005) · Zbl 1109.90079
[11] Cho, Y. J.; Zhou, H.; Guo, G.: Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. math. Appl. 47, 707-717 (2004) · Zbl 1081.47063 · doi:10.1016/S0898-1221(04)90058-2
[12] Kamimura, S.; Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[13] Matsushita, S. Y.; Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. approx. Theory 134, 257-266 (2005) · Zbl 1071.47063
[14] Matsushita, S.; Takahashi, W.: Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed point theory appl. 2004, 37-47 (2004) · Zbl 1088.47054
[15] Moudafi, A.: Second-order differential proximal methods for equilibrium problems, J. inequal. Pure appl. Math. 4, No. art. 18 (2003) · Zbl 1175.90413
[16] Plubtieng, S.; Punpaeng, R.: A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. math. Comput. 197, 548-558 (2008) · Zbl 1154.47053 · doi:10.1016/j.amc.2007.07.075
[17] Plubtieng, S.: Rattanaporn punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. math. Anal. appl. 336, 455-469 (2007) · Zbl 1127.47053 · doi:10.1016/j.jmaa.2007.02.044
[18] Qin, X.; Shang, M.; Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear anal. (2007) · Zbl 1158.47317 · doi:10.1155/2007/95412
[19] Qin, X.; Shang, M.; Su, Y.: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. comput. Modelling. (2008) · Zbl 1187.65058
[20] Reich, S.: A weak convergence theorem for the alternating method with Bregman distance, Theory and applications of nonlinear operators of accretive and monotone type, 313-318 (1996) · Zbl 0943.47040
[21] Su, Y.; Shang, M.; Qin, X.: An iterative method of solution for equilibrium and optimization problems, Nonlinear anal. (2007)
[22] Takahashi, W.: Nonlinear functional analysis, (2000) · Zbl 0997.47002
[23] Takahashi, S.; Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. math. Anal. appl. 331, 506-515 (2007) · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[24] Takahashi, W.; Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear anal. (2008) · Zbl 1187.47054 · doi:10.1155/2008/528476
[25] Tada, A.; Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. optim. Theory appl. 133, 359-370 (2007) · Zbl 1147.47052 · doi:10.1007/s10957-007-9187-z
[26] Yao, Y.; Noor, M. A.; Liou, Y. C.: On iterative methods for equilibrium problems, Nonlinear anal. (2008)