×

A posteriori error estimates for mixed finite element solutions of convex optimal control problems. (English) Zbl 1165.65034

A posteriori error estimates for the mixed finite element approximation of a convex optimal control governed by elliptic equations are derived. The authors construct the mixed finite element approximation for the following optimal control problem:
\[ \min_{u\in K\subset L^2(\Omega_U)} [g_1(\mathbf{p})+g_2(y)+h(u)],\tag{1} \]
\[ \operatorname{div} \mathbf{p}=f+Bu \quad \text{in }\Omega \qquad \mathbf{p}=-A \operatorname{grad}y \quad\text{in }\Omega,\qquad y=0 \quad\text{on } \partial \Omega,\tag{2} \]
where the bounded open set \(\Omega \subset\mathbb R^2\), is a convex polygon or has the smooth boundary \(\partial \Omega, \Omega_U\) is a bounded open set in \(\mathbb R^2\) with the Lipschitz boundary \(\partial \Omega_U\), and \(K\) is a closed convex set in \(L^2(\Omega_U)\). Using a weak formula for the state equality (2), the mixed finite element approximation of (1), (2), is introduced as follows: Find \([\mathbf{p}_h, y_h, u_h] \in \mathbf{V}_h \times W_h \times U_h\) such that
\[ \min_{u_h\in K_h \subset U_h} \{g_1(\mathbf{p}_h)+g_2(y_h)+h(u_h)\},\tag{3} \]
\[ \begin{aligned} (A^{-1} \mathbf{p}_h, \mathbf{v}_h)-(y_h, \operatorname{div} \mathbf{v}_h) = 0, &\quad \text{for any } \mathbf{v}_h \in \mathbf{V}_h \subset \mathbf{V}= H(\operatorname{div}, \Omega), \\ \operatorname{div}\mathbf{p}_h, w_h)=(f+Bu_h, w_h), &\quad \text{for any } w_h \in W_h \subset W = L^2 (\Omega), \end{aligned}\tag{4} \]
where \(\mathbf{V}_h \times W_h \subset \mathbf{V} \times W\) denotes the RT, BDM or BDFM space of index \(k\) associated with triangulation or rectangulation \(\operatorname{Im}_h\) of \(\Omega\), where \(k \geq 0, K_h\) is a non-empty closed convex set in \(U_h\). For fixed \(h\) the control problem (3), (4) has a unique solution \([\mathbf{p}_h, y_h, u_h] \in \mathbf{V}_h \times W_h \times U_h\) if and only if there is a co-state \((\mathbf{q}_h, z_h)\in \mathbf{V}_h \times W_h\) such that \((\mathbf{p}_h, y_h, \mathbf{q}_h, z_h, u_h)\) satisfies the following optimality conditions
\[ \begin{aligned} (A^{-1} \mathbf{p}_h, \mathbf{v}_h)-(y_h, \operatorname{div}\mathbf{v}_h) = 0, &\quad \text{for any } \mathbf{v}_h \in \mathbf{V}_h,\\ (\operatorname{div}\mathbf{p}_h, w_h)=(f+Bu_h, w_h), &\quad \text{for any } w_h \in W_h,\\ (A^{-1} \mathbf{q}_h, w_h)-(z_h, \operatorname{div}\mathbf{v}_h) = - (g_{1}' (\mathbf{p}_h), \mathbf{v}_h), &\quad \text{for any } \mathbf{v}_h \in \mathbf{V}_h,\\ (\operatorname{div}\mathbf{q}_h, w_h)= (g'_{2} (y_h), w_h), &\quad \text{for any } w_h \in W_h, \\ (h'(u_h)+B^*z_h, \tilde{u}_h-u_h) \geq 0, &\quad \text{for any }\tilde{u}_h \in K_h. \end{aligned}\tag{5} \]
Main results: A posteriori error estimates for some intermediate errors for the RT, the BDM and the BDFM mixed method, are derived. The authors’ analysis relies on a decomposition of the flux functions in the spirit of a generalized Helmholtz decomposition. Further, a posteriori error estimates for convex optimal control problems in general cases where the convex set \(K\) may not be the whole control space \(U\) and the discretized constraint set \(K_H\) may not be the subset of \(K\), are also presented. Finally equivalent a posteriori error estimates for a class of optimal control problems which are most frequently met in applications are established. Such estimates can be used to construct reliable adaptive mixed finite elements for the control problems.

MSC:

65K10 Numerical optimization and variational techniques
49J20 Existence theories for optimal control problems involving partial differential equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), Wiley New York · Zbl 1008.65076
[2] Babuska, I.; Rheinboldt, W.C., Error estimates for adaptive finite element computations, SIAM, J. numer. anal., 5, 736-754, (1978) · Zbl 0398.65069
[3] Babuska, I.; Strouboulis, T., The finite element method and its reliability, (2001), Oxford University Press Oxford · Zbl 0997.74069
[4] Banichuk, N.V., Mesh refinement for shape optimisation, Structural optim., 9, 45-51, (1995)
[5] Becker, R., Mesh adaptation for stationary flow control, J. math. fluid mech., 3, 4, 317-341, (2001) · Zbl 0997.76041
[6] Becker, R.; Kapp, H.; Rannacher, R., Adaptive finite element methods for optimal control of partial differential equations: basic concept, SIAM J. control. optim., 39, 1, 113-132, (2000) · Zbl 0967.65080
[7] Becker, R.; Rannacher, R., An optimal control approach to a-posteriori error estimation,, (), 1-102 · Zbl 1105.65349
[8] D. Braess, R. Verfurth, A posteriori error estimators for the Raviart-Thomas element, Preprint 175/1994 Fakultat fur Mathematik der Ruhr-Universitat Bochum. · Zbl 0866.65071
[9] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Springer Berlin, Mr 92d:65187 · Zbl 0788.73002
[10] Carstensen, C., A posteriori error estimate for the mixed finite element method, Math. comp., 66, 218, 465-476, (1997) · Zbl 0864.65068
[11] Chen, Y.; Liu, W.B., Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. numer. anal. model., 3, 3, 311-321, (2006) · Zbl 1125.49026
[12] P.G. Ciarlet, The Finite Element Method For Elliptic Problems, North-Holland, Amsterdam, 1978 MR 58:25001.
[13] Clement, P., Approximation by finite element functions using local regularization, RAIRO ser. rougr anal. numer., R-2, 77-84, (1975), Mr 53:4569 · Zbl 0368.65008
[14] Gunzburger, M.D.; Hou, S.L., Finite dimensional approximation of a class of constrained nonlinear control problems, SIAM J. control optim., 34, 1001-1043, (1996) · Zbl 0849.49005
[15] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985. Mr 86m:35044. · Zbl 0695.35060
[16] Y. Huang, R. Li, W.B. Liu, N.N. Yan, Mulit-adaptive mesh discretization for finite element approximation of constrained optimal control problems, SIAM. J. Control. Optim., under review.
[17] R. Li, On multi-mesh h-adaptive methods. 24(3) (2005) 321-341. · Zbl 1080.65111
[18] Li, R.; Lin, W.B.; Ma, H.P.; Tang, T., Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. control optim., 41, 5, 1321-1349, (2002) · Zbl 1034.49031
[19] Lions, J.L., Optimal control of systems governed by partial differential equations, (1971), Springer Berlin · Zbl 0203.09001
[20] Liu, W.B.; Neittaanmaki, P.; Tiba, D., Existence for shape optimization problems in arbitrary dimension, SIAM J. control optim., 41, 5, 1440-1454, (2003) · Zbl 1031.49040
[21] Liu, W.B.; Yan, N.N., A posteriori error analysis for convex distributed optimal control problems, Adv. comp. math., 15, 1-4, 285-309, (2001) · Zbl 1008.49024
[22] Liu, W.B.; Yan, N.N., A posteriori error estimates for convex boundary control problems, SIAM numer. anal., 39, 73-99, (2001) · Zbl 0988.49018
[23] Liu, W.B.; Yan, N.N., A posteriori error estimates for control problems governed by Stokes equations, SIAM J. numer. anal., 40, 5, 1850-1869, (2002) · Zbl 1028.49025
[24] Liu, W.B.; Yan, N.N., A posteriori error estimates for optimal control problems governed by parabolic equations, Numer.math., 93, 3, 497-521, (2003) · Zbl 1049.65057
[25] Neittaanmaki, P.; Tiba, D., Optimal control of nonlinear parabolic systems: theory algorithms and applications, (1994), Marcell Dekker New York · Zbl 0812.49001
[26] R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques, Wiley-Teubner, 1996. · Zbl 0853.65108
[27] Wohlmuth, B.; Hoppe, R.H.W., A comparison of a posteriori error estimators for mixed finite element discretizations by raviart – thomas elements, Math. comp., 68, 228, 1347-1378, (1999) · Zbl 0929.65094
[28] Zienkiewicz, O.C.; Zhu, J.Z., Adaptivity and mesh generation, Internat. J. numer. methods engng., 32, 783-810, (1991) · Zbl 0755.65119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.