zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Fourier method for the fractional diffusion equation describing sub-diffusion. (English) Zbl 1165.65053
The paper focuses on the initial-boundary value problem of the fractional diffusion equation describing sub-diffusion. A brief review of relevant literature is included, thus setting the paper in context. A paper by {\it T. A. M. Langlands} and {\it B. I. Henry} [J. Comput. Phys. 205, No. 2, 719--736 (2005; Zbl 1072.65123)] in which they proposed an implicit numerical scheme ($L_1$ approximation) and discussed its accuracy and stability, is referred to. The motivation behind this paper is to build on this work, by deriving the global accuracy of the presented implicit scheme and establishing unconditional stability for all $\lambda$ in the range $0<\lambda \le 1$. A Fourier method is used. In Section 2 an implicit difference approximation scheme (IDAS) is presented and its unconditional stability and $L_2$-convergence are investigated in Sections 3 and 4. In Section 5 the implicit difference scheme is written in matrix form and is proved to be uniquely solvable. The paper concludes with two numerical examples, each describing sub-diffusion (one wit a non-homogeneous term and the second with a homogeneous term), to confirm their theoretical results. The examples demonstrate that the IDAS is unconditionally stable and convergent ant that it can be applied to simulate fractional dynamical systems. The authors state that the Fourier method technique used to analyse stability and convergence can be extended to other fractional partial differential equations.

65M12Stability and convergence of numerical methods (IVP of PDE)
65M70Spectral, collocation and related methods (IVP of PDE)
35B35Stability of solutions of PDE
Full Text: DOI
[1] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032
[2] Gorenflo, R.; Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. Fractals and fractional calculus in continuum mechanics, 223-276 (1997)
[3] Mainardi, F.: Fractional relaxation -- oscillation and fractional diffusion-wave phenomena. Chaos soliton fract. 7, No. 9, 1461-1477 (1996) · Zbl 1080.26505
[4] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[5] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear dyn. 29, 129-143 (2002) · Zbl 1009.82016
[6] Gorenflo, R.; Mainardi, F.: Random walk models for space fractional diffusion processes. Fractional calc. Appl. anal. 1, 167-191 (1998) · Zbl 0946.60039
[7] Mainardi, F.; Luchko, Yu.; Pagnini, G.: The fundamental solution of the space -- time fractional diffusion equation. Fractional calc. Appl. anal. 4, No. 2, 153-192 (2001) · Zbl 1054.35156
[8] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Application of a fractional advection -- dispersion equation. Water resour. Res. 36, No. 6, 1403-1412 (2000)
[9] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: The fractional-order governing equation of Lévy motion. Water resour. Res. 36, No. 6, 1413-1423 (2000)
[10] Wyss, W.: The fractional diffusion equation. J. math. Phys. 27, 2782-2785 (1986) · Zbl 0632.35031
[11] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations. J. math. Phys. 30, 134-144 (1989) · Zbl 0692.45004
[12] Huang, F.; Liu, F.: The time fractional diffusion and advection -- dispersion equation. Anziam j. 46, 317-330 (2005) · Zbl 1072.35218
[13] Langlands, T. A. M.; Henry, B. I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. comp. Phys. 205, 719-736 (2005) · Zbl 1072.65123
[14] Yuste, S. B.; Acedo, L.: An explicit finite difference method and a new von neumman-type stability analysis for fractional diffusion equations. SIAM J. Numer. anal. 42, No. 5, 1862-1874 (2005) · Zbl 1119.65379
[15] Liu, F.; Anh, V.; Turner, I.: Numerical solution of the space fractional Fokker -- Planck equation. J. comp. Appl. math. 166, 209-219 (2004) · Zbl 1036.82019
[16] Liu, F.; Anh, V.; Turner, I.; Zhuang, P.: Numerical simulation for solute transport in fractal porous media. Anziam j. 45, No. E, 461-473 (2004) · Zbl 1123.76363
[17] Meerschaert, M.; Tadjeran, C.: Finite difference approximations for fractional advection -- dispersion flow equations. J. comp. Appl. math. 172, 65-77 (2004) · Zbl 1126.76346
[18] Shen, S.; Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. Anziam j. 46, No. E, 871-887 (2005)
[19] Liu, F.; Shen, S.; Anh, V.; Turner, I.: Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. Anziam j. 46, No. E, 488-504 (2005)
[20] Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on boundary domains in R2. J. comput. Appl. math. 193, No. 1, 243-268 (2006) · Zbl 1092.65122
[21] Liu, Q.; Liu, F.; Turner, I.; Anh, V.: Approximation of the Lévy -- Feller advection -- dispersion process by random walk and finite difference method. J. phys. Comp. 222, 57-70 (2007) · Zbl 1112.65006
[22] Zhuang, P.; Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. appl. Math. comput. 22, No. 3, 87-99 (2006) · Zbl 1140.65094
[23] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage , Stability and convergence of the difference methods for the space -- time fractional advection -- diffusion equation, Appl. Math. Comput., (2007), in press. · Zbl 1193.76093
[24] Zhang, H.; Liu, F.; Anh, V.: Numerical approximation of Lévy -- Feller diffusion equation and its probability interpretation. J. comput. Appl. math. 206, 1098-1115 (2007) · Zbl 1125.26014
[25] So, F.; Liu, K. L.: A study of the subdiffusive fractional Fokker -- plank equation of bistable systems. Physica A 331, 378-390 (2004)