zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adomian’s decomposition method and homotopy perturbation method in solving nonlinear equations. (English) Zbl 1165.65345
Summary: The Adomian decomposition method and the homotopy perturbation method are two powerful methods which consider the approximate solution of a nonlinear equation as an infinite series usually converging to the accurate solution. By theoretical analysis of the two methods, we show that the two methods are equivalent in solving nonlinear equations.

MSC:
65H05Single nonlinear equations (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Abbaoui, K.; Cherruault, Y.: Convergence of Adomian’s method applied to nonlinear equations, Math. comput. Modelling 20, No. 9, 69-73 (1994) · Zbl 0822.65027 · doi:10.1016/0895-7177(94)00163-4
[2] Abbaoui, K.; Cherruault, Y.: New ideas for proving convergence of decomposition methods, Comput. math. Appl. 29, No. 7, 103-108 (1995) · Zbl 0832.47051 · doi:10.1016/0898-1221(95)00022-Q
[3] Abbaoui, K.; Cherruault, Y.; Seng, V.: Practical formulae for the calculus of multivariable Adomian polynomials, Math. comput. Modelling 22, No. 1, 89-93 (1995) · Zbl 0830.65010 · doi:10.1016/0895-7177(95)00103-9
[4] Abbasbandy, S.: Improving Newton--raphson method for nonlinear equations by modified Adomian decomposition method, Appl. math. Comput. 145, 887-893 (2003) · Zbl 1032.65048 · doi:10.1016/S0096-3003(03)00282-0
[5] Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation method and Adomian’s decomposition method, Appl. math. Comput. 173, 493-500 (2006) · Zbl 1090.65143 · doi:10.1016/j.amc.2005.04.077
[6] Adomian, G.: Nonlinear stochastic differential equations, J. math. Anal. appl. 55, 441-452 (1976) · Zbl 0351.60053 · doi:10.1016/0022-247X(76)90174-8
[7] Adomian, G.: A review of the decomposition method in applied mathematics, J. math. Anal. appl. 135, 501-544 (1988) · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9
[8] Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994) · Zbl 0802.65122
[9] Adomian, G.; Rach, R.: On the solution of algebraic equations by the decomposition method, J. math. Anal. appl. 105, 141-166 (1985) · Zbl 0552.60060 · doi:10.1016/0022-247X(85)90102-7
[10] Cherruault, Y.: Convergence of Adomian’s method, Kyberbetes 8, No. 2, 31-38 (1988) · Zbl 0697.65051
[11] Cherruault, Y.; Adomian, G.: Decomposition method: A new proof of convergence, Math. comput. Modelling 18, No. 12, 103-106 (1993) · Zbl 0805.65057 · doi:10.1016/0895-7177(93)90233-O
[12] Cherruault, Y.; Adomian, G.; Abbaoui, K.; Rach, R.: Further remarks on convergence of decomposition method, Int. J. Bio-medical comput. 38, 89-93 (1995)
[13] Chun, C.: Construction of Newton-like iteration methods for solving nonlinear equations, Numer. math. 104, 297-315 (2006) · Zbl 1126.65042 · doi:10.1007/s00211-006-0025-2
[14] Cole, J. D.: Perturbation methods in applied mathematics, (1968) · Zbl 0162.12602
[15] Gabet, L.: The theoretical foundation of the Adomian method, Comput. math. Appl. 27, No. 12, 41-52 (1994) · Zbl 0805.65056 · doi:10.1016/0898-1221(94)90084-1
[16] Golbabai, A.; Javidi, M.: Newton-like methods for solving system of non-linear equations, Appl. math. Comput. 192, No. 2, 546-551 (2007) · Zbl 1193.65149 · doi:10.1016/j.amc.2007.03.035
[17] He, J. H.: Homotopy perturbation technique, Comput. meth. Appl. mech. Eng. 178, 257-262 (1999) · Zbl 0956.70017
[18] He, J. H.: A coupling of method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Non-linear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[19] He, J. H.: Comparison of homotopy perturbation method and homotopy analysis method, Appl. math. Comput. 156, 527-539 (2004) · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[20] He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys. lett. A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[21] He, J. H.: New interpretation of homotopy perturbation method, addendum: ”some asymptotic methods for strongly nonlinear equation”, Internat. J. Modern phys. B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039
[22] He, J. H.: Perturbation methods: basic and beyond, (2006)
[23] Householder, A. S.: The numerical treatment of a single nonlinear equation, (1970) · Zbl 0242.65047
[24] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[25] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl. math. Comput. 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[26] Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl. math. Comput. 169, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[27] Nayfeh, A. H.: Perturbation methods, (2000) · Zbl 0995.35001
[28] Noor, M. A.; Noor, K. I.: Improved iterative methods for solving nonlinear equations, Appl. math. Comput. 184, 270-275 (2007) · Zbl 1115.65055 · doi:10.1016/j.amc.2006.05.165
[29] Ostrowski, A. M.: Solutions of equations and system of equations, (1960) · Zbl 0115.11201
[30] Özis, T.; Yildirm, A.: Comparison between Adomian’s method and he’s homotopy perturbation method, Comput. math. Appl. 56, No. 5, 1216-1224 (2008) · Zbl 1155.65344 · doi:10.1016/j.camwa.2008.02.023
[31] Potra, F. A.; Pták, V.: Nondiscrete induction and iterative processes, Research notes in mathematics 103 (1984) · Zbl 0549.41001
[32] Sajid, M.; Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations, Nonlinear anal.: real world appl. 9, No. 5, 2296-2301 (2008) · Zbl 1156.76436 · doi:10.1016/j.nonrwa.2007.08.007
[33] Traub, J. F.: Iterative methods for the solution of equations, (1982) · Zbl 0472.65040
[34] Wazwaz, A. M.: A comparison between Adomian decomposition method and Taylor series method in series solutions, Appl. math. Comput. 97, 37-44 (1998) · Zbl 0943.65084 · doi:10.1016/S0096-3003(97)10127-8
[35] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. math. Comput. 111, 53-69 (2000) · Zbl 1023.65108 · doi:10.1016/S0096-3003(99)00047-8