Li, Jingna A two-dimensional Landau-Lifshitz model in studying thin film micromagnetics. (English) Zbl 1165.74019 Abstr. Appl. Anal. 2009, Article ID 603591, 13 p. (2009). Summary: The paper is concerned with a two-dimensional Landau-Lifshitz equation which was first raised by A. DeSimone et al. [Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457, No. 2016, 2983–2991 (2001; Zbl 1065.74028)], and so forth, when studying thin film micromagnetics. We get the existence of a local weak solution by approximating it with a higher-order equation. Penalty approximation and semigroup theory are employed to deal with the higher-order equation. MSC: 74F15 Electromagnetic effects in solid mechanics 74K35 Thin films 35Q72 Other PDE from mechanics (MSC2000) 35Q60 PDEs in connection with optics and electromagnetic theory 82D40 Statistical mechanics of magnetic materials Keywords:penalty approximation; existence; local weak solution; semigroup theory Citations:Zbl 1065.74028 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Physikalische Zeitschrift der Sowjetunion, vol. 8, pp. 153-169, 1935. · Zbl 0012.28501 [2] B. Guo and M. C. Hong, “The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps,” Calculus of Variations and Partial Differential Equations, vol. 1, no. 3, pp. 311-334, 1993. · Zbl 0798.35139 · doi:10.1007/BF01191298 [3] J.-N. Li, X.-F. Wang, and Z.-A. Yao, “An extension Landau-Lifshitz model in studying soft ferromagnetic films,” Acta Mathematicae Applicatae Sinica. English Series, vol. 23, no. 3, pp. 421-432, 2007. · Zbl 1137.35073 · doi:10.1007/s10255-007-0382-3 [4] G. Carbou and P. Fabrie, “Regular solutions for Landau-Lifschitz equation in a bounded domain,” Differential and Integral Equations, vol. 14, no. 2, pp. 213-229, 2001. · Zbl 1161.35421 [5] Y. Chen, S. Ding, and B. Guo, “Partial regularity for two-dimensional Landau-Lifshitz equations,” Acta Mathematica Sinica, vol. 14, no. 3, pp. 423-432, 1998. · Zbl 1014.35086 · doi:10.1007/BF02580447 [6] J. L. Joly, G. Métivier, and J. Rauch, “Global solutions to Maxwell equations in a ferromagnetic medium,” Annales Henri Poincaré, vol. 1, no. 2, pp. 307-340, 2000. · Zbl 0964.35155 · doi:10.1007/PL00001007 [7] A. Visintin, “On Landau-Lifshitz’ equations for ferromagnetism,” Japan Journal of Applied Mathematics, vol. 2, no. 1, pp. 69-84, 1985. · Zbl 0613.35018 · doi:10.1007/BF03167039 [8] P. L. Sulem, C. Sulem, and C. Bardos, “On the continuous limit for a system of classical spins,” Communications in Mathematical Physics, vol. 107, no. 3, pp. 431-454, 1986. · Zbl 0614.35087 · doi:10.1007/BF01220998 [9] W. E and X.-P. Wang, “Numerical methods for the Landau-Lifshitz equation,” SIAM Journal on Numerical Analysis, vol. 38, no. 5, pp. 1647-1665, 2000. · Zbl 0988.65079 · doi:10.1137/S0036142999352199 [10] X.-P. Wang, C. J. García-Cervera, and W. E, “A Gauss-Seidel projection method for micromagnetics simulations,” Journal of Computational Physics, vol. 171, no. 1, pp. 357-372, 2001. · Zbl 1012.82002 · doi:10.1006/jcph.2001.6793 [11] A. DeSimone, R. V. Kohn, S. Müller, and F. Otto, “A reduced theory for thin-film micromagnetics,” Communications on Pure and Applied Mathematics, vol. 55, no. 11, pp. 1408-1460, 2002. · Zbl 1027.82042 · doi:10.1002/cpa.3028 [12] A. DeSimone, R. V. Kohn, S. Müller, F. Otto, and R. Schäfer, “Two-dimensional modelling of soft ferromagnetic films,” Proceedings of the Royal Society of London. Series A, vol. 457, no. 2016, pp. 2983-2991, 2001. · Zbl 1065.74028 · doi:10.1098/rspa.2001.0846 [13] F. Alouges and A. Soyeur, “On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness,” Nonlinear Analysis: Theory, Methods & Applications, vol. 18, no. 11, pp. 1071-1084, 1992. · Zbl 0788.35065 · doi:10.1016/0362-546X(92)90196-L [14] C. X. Miao, Harmonic Analysis and Its Applications to Partial Differential Equations, Science Press, Beijing, China, 2nd edition, 1999. [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. · Zbl 0516.47023 [16] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Sun Yat-Sen University Press, GuangZhou, China, 1996. · Zbl 0189.40603 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.