zbMATH — the first resource for mathematics

Elementary preamble to a theory of granular gases. (English) Zbl 1165.76380
Summary: Granular materials partake almost dramatically at times of the properties of solids and, under different circumstances, of some properties of gases. Here, within the mechanics of mass points, an elementary analysis, involving predominantly velocities rather than places, is shown to lead to a global equation concerning the shuffling motions (in addition to continuity and Cauchy’s equations); it involves a stirring tensor and rules the evolution of a Reynolds’ tensor.

76T25 Granular flows
74C99 Plastic materials, materials of stress-rate and internal-variable type
76N15 Gas dynamics, general
Full Text: EuDML arXiv
[1] G. CAPRIZ, Elementary preamble to a theory of kinetic continua, in Atti del Convegno < La matematica nelle scienze della vita e applicazioni> , Bologna (1999), pp. 17-31.
[2] T. PÖSCHEL - S. LUDING, (edts), Granular gases, Springer-Verlag, Berlin, 2001.
[3] C. TRUESDELL, Hypo-elasticity, J. Rational Mech. Anal., 4 (1955), pp. 83-133. Zbl0064.42002 MR68412 · Zbl 0064.42002
[4] H. GRAD, On the kinetic theory of rarefied gases, Arch. Rational Mech. Anal., 2 (1949), pp. 331-407. Zbl0037.13104 MR33674 · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[5] I. MÜLLER - T. RUGGERI, Rational extended thermodynamics, Springer-Verlag, New York, 1998. Zbl0895.00005 MR1632151 · Zbl 0895.00005
[6] J. T. JENKINS - M. W. RICHMAN, Grad’s 13 moments system for a dense gas of inelastic spheres, Arch. Rational Mech. Anal., 87 (1985), pp. 355-377. Zbl0617.76085 MR767506 · Zbl 0617.76085 · doi:10.1007/BF00250919
[7] H. COHEN - R. G. MUNCASTER, The theory of pseudo-rigid bodies, SpringerVerlag, Berlin, 1988. Zbl0687.70001 MR953085 · Zbl 0687.70001
[8] R. M. LEWIS, Measure-theoretic foundations of statistical mechanics, Arch. Rational Mech. Anal., 5 (1960), pp. 355-381. Zbl0094.43201 MR152326 · Zbl 0094.43201 · doi:10.1007/BF00252915
[9] P. GOLDREICH - S. TREMAIN (1978), Velocity dispersion in Saturn’s rings, Icarus, 34 (1978), p. 227.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.