Segawa, Etsuo; Konno, Norio Limit theorems for quantum walks driven by many coins. (English) Zbl 1165.81318 Int. J. Quantum Inf. 6, No. 6, 1231-1243 (2008). Summary: We obtain some rigorous results on limit theorems for quantum walks driven by many coins introduced by T. A. Brun, H. A. Carteret and A. Ambainis [Phys. Rev. Lett. 91, 130602 (2003), Phys. Rev. A 67, 062317 (2003) and Phys. Rev. A 67, 032304 (2003)] in the long time limit. The results imply that whether the behavior of a particle is quantum or classical depends on the three factors: the initial qubit, the number of coins \(M, d = [t/M]\), where \(t\) is time step. Our main theorem shows that we can see a transition from classical behavior to quantum one for a class of three factors. Cited in 12 Documents MSC: 81P68 Quantum computation 82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics Keywords:quantum walks; limit theorem; many coins PDF BibTeX XML Cite \textit{E. Segawa} and \textit{N. Konno}, Int. J. Quantum Inf. 6, No. 6, 1231--1243 (2008; Zbl 1165.81318) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1007/BF02199356 · Zbl 0952.37501 [2] Aharonov Y., Phys. Rev. A 48 pp 1689– [3] DOI: 10.1103/PhysRevA.67.052307 [4] Konno N., Quant. Inform. Comput. 2 pp 578– [5] DOI: 10.1103/PhysRevLett.94.100602 [6] DOI: 10.1080/00107151031000110776 [7] DOI: 10.1142/S0219749903000383 · Zbl 1069.81505 [8] Kendon V., Math. Struct. Comput. Sci. 17 pp 1169– [9] DOI: 10.1007/978-3-540-69365-9_7 · Zbl 1329.82011 [10] DOI: 10.1023/A:1023413713008 · Zbl 1329.82012 [11] DOI: 10.2969/jmsj/1150287309 · Zbl 1173.81318 [12] DOI: 10.1103/PhysRevE.69.026119 [13] DOI: 10.1103/PhysRevLett.91.130602 [14] Brun T. A., Phys. Rev. A 67 pp 062317– [15] DOI: 10.1088/0305-4470/37/30/013 · Zbl 1067.82024 [16] DOI: 10.1088/0305-4470/39/26/016 · Zbl 1098.81024 [17] DOI: 10.1016/j.aop.2007.01.009 · Zbl 1176.82012 [18] DOI: 10.1103/PhysRevE.72.026113 [19] DOI: 10.1142/S0219025706002354 · Zbl 1097.60087 [20] DOI: 10.1142/S0219749906002389 · Zbl 1107.81015 [21] DOI: 10.1103/PhysRevA.74.042334 [22] DOI: 10.1103/PhysRevA.67.032304 [23] DOI: 10.1103/PhysRevA.77.062302 [24] DOI: 10.1103/PhysRevA.76.012332 [25] Georgi H., Lie Algebras in Particle Physics (1999) [26] Nielsen M. A., Quantum Computation and Quantum Information (2000) · Zbl 1049.81015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.