zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A bundle-filter method for nonsmooth convex constrained optimization. (English) Zbl 1165.90024
Summary: For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression and aggregation techniques of proximal bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is sometimes easier to satisfy than the usual descent condition in bundle methods. Some encouraging preliminary computational results are also reported.

90C30Nonlinear programming
65K05Mathematical programming (numerical methods)
Full Text: DOI
[1] Auslender A. (1987). Numerical methods for nondifferentiable convex optimization. Math. Program. Study 30: 102--126 · Zbl 0616.90052
[2] Auslender A. (1997). How to deal with the unbounded in optimization: theory and algorithms. Math. Program. 79: 3--18 · Zbl 0887.90131
[3] Bonnans J.F., Gilbert J.-Ch., Lemaréchal C. and Sagastizábal C. (2003). Numerical Optimization. Theoretical and Practical Aspects. Universitext. Springer, Berlin
[4] Fletcher R., Gould N., Leyffer S., Toint P. and Wächter A. (2002). Global convergence of trust-region and SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13: 635--659 · Zbl 1038.90076 · doi:10.1137/S1052623499357258
[5] Fletcher, R., Leyffer, S.: A bundle filter method for nonsmooth nonlinear optimization. Numerical Analysis Report NA/195. Department of Mathematics, The University of Dundee, Scotland (1999)
[6] Fletcher R. and Leyffer S. (2002). Nonlinear programming without a penalty function. Math. Program 91: 239--269 · Zbl 1049.90088 · doi:10.1007/s101070100244
[7] Fletcher R., Leyffer S. and Toint P.L. (2002). On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13: 44--59 · Zbl 1029.65063 · doi:10.1137/S105262340038081X
[8] Frangioni A. (1996). Solving semidefinite quadratic problems within nonsmooth optimization algorithms. Comput. Oper. Res. 23: 1099--1118 · Zbl 0871.90059 · doi:10.1016/0305-0548(96)00006-8
[9] Frangioni A. (2002). Generalized bundle methods. SIAM J. Optim. 13: 117--156 · Zbl 1041.90037 · doi:10.1137/S1052623498342186
[10] Gonzaga C.C., Karas E.W. and Vanti M. (2003). A globally convergent filter method for nonlinear programming. SIAM J. Optim. 14: 646--669 · Zbl 1079.90129 · doi:10.1137/S1052623401399320
[11] Hiriart-Urruty J.-B. and Lemaréchal C. (1993). Convex Analysis and Minimization Algorithms. Number 305--306 in Grund. der Math. Wiss. Springer, Heidelberg
[12] Hock W. and Schittkowski K. (1981). Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin · Zbl 0452.90038
[13] Kiwiel K.C. (1985). Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics, vol. 1133. Springer, Berlin · Zbl 0561.90059
[14] Kiwiel K.C. (1985). An exact penalty function algorithm for nonsmooth convex constrained minimization problems. IMA J. Numer. Anal. 5: 111--119 · Zbl 0561.65042 · doi:10.1093/imanum/5.1.111
[15] Kiwiel K.C. (1986). A method for solving certain quadratic programming problems arising in nonsmooth optimization. IMA J. Numer. Anal. 6: 137--152 · Zbl 0603.65041 · doi:10.1093/imanum/6.2.137
[16] Kiwiel K.C. (1987). A constraint linearization method for nondifferentiable convex minimization. Numer. Math. 51: 395--414 · Zbl 0638.90083 · doi:10.1007/BF01397543
[17] Kiwiel K.C. (1991). Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization. Math. Program. 52: 285--302 · Zbl 0754.90045 · doi:10.1007/BF01582892
[18] Lemaréchal C., Nemirovskii A. and Nesterov Yu. (1995). New variants of bundle methods. Math. Program. 69: 111--148 · Zbl 0857.90102
[19] Lemaréchal C. and Sagastizábal C. (1997). Variable metric bundle methods: from conceptual to implementable forms. Math Program 76: 393--410 · Zbl 0872.90072
[20] Lukšan L (1984). Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation. Kybernetika 20: 445--457 · Zbl 0552.90074
[21] Lukšan, L., Vlček, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math. Program. 83(3, Ser. A):373--391 (1998) · Zbl 0920.90132
[22] Lukšan L. and Vlček J. (1999). Globally convergent variable metric method for convex nonsmooth unconstrained minimization. J. Optim. Theory Appl. 102(3): 593--613 · Zbl 0955.90102 · doi:10.1023/A:1022650107080
[23] Lukšan, L., Vlček, J.: NDA: Algorithms for nondifferentiable optimization. Research Report V-797. Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2000)
[24] Lukšan L. and Vlček J. (2001). Algorithm 811, NDA, http://www.netlib.org/toms/811. ACM Trans. Math. Softw. 27(2): 193--213 · Zbl 1070.65552 · doi:10.1145/383738.383740
[25] Mangasarian O.L. (1969). Nonlinear Programming. McGraw-Hill, New York · Zbl 0194.20201
[26] Mifflin R. (1977). An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2: 191--207 · Zbl 0395.90069 · doi:10.1287/moor.2.2.191
[27] Mifflin R. (1982). A modification and extension of Lemarechal’s algorithm for nonsmooth minimization. Math. Program. Study 17: 77--90 · Zbl 0476.65047
[28] Powell M.J.D. (1985). On the quadratic programming algorithm of Goldfarb and Idnani. Math. Program. Study 25: 46--61 · Zbl 0584.90069
[29] Rey P.A. and Sagastizábal C. (2002). Dynamical adjustment of the prox-parameter in variable metric bundle methods. Optimization 51: 423--447 · Zbl 1008.90073 · doi:10.1080/02331930290019495
[30] Sagastizábal C. and Solodov M. (2005). An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16: 146--169 · Zbl 1114.90093 · doi:10.1137/040603875