##
**Still flowing: Approaches to traffic flow and traffic jam modeling.**
*(English)*
Zbl 1165.90375

Summary: Certain aspects of traffic flow measurements imply the existence of a phase transition. Models known from chaos and fractals, such as nonlinear analysis of coupled differential equations, cellular automata, or coupled maps, can generate behavior which indeed resembles a phase transition in the flow behavior. Other measurements point out that the same behavior could be generated by geometrical constraints of the scenario. This paper looks at some of the empirical evidence, but mostly focuses on different modeling approaches. The theory of traffic jam dynamics is reviewed in some detail, starting from the well-established theory of kinematic waves and then veering into the area of phase transitions. One aspect of the theory of phase transitions is that, by changing one single parameter, a system can be moved from displaying a phase transition to not displaying a phase transition. This implies that models for traffic can be tuned so that they display a phase transition or not. This paper focuses on microscopic modeling, i.e., coupled differential equations, cellular automata, and coupled maps. The phase transition behavior of these models, as far as it is known, is discussed. Similarly, fluid-dynamical models for the same questions are considered. A large portion of this paper is given to the discussion of extensions and open questions, which makes clear that the question of traffic jam dynamics is, albeit important, only a small part of an interesting and vibrant field. As our outlook shows, the whole field is moving away from a rather static view of traffic toward a dynamic view, which uses simulation as an important tool.