zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of nonlinear triopoly game with heterogeneous players. (English) Zbl 1165.91324
Summary: A nonlinear triopoly game with heterogeneous players is presented. We consider three types of players; boundedly rational, adaptive, and naive. A triopoly game is modelled by a three dimensional discrete dynamical system. The stability conditions of the equilibrium points are analyzed. Numerical simulations are used to show bifurcation diagrams, phase portraits, sensitive dependence on initial conditions and fractal dimension. The chaotic behavior of the model has been stabilized on the Nash equilibrium point, by the use of the Pyragas delay feedback control method.

91A23Differential games (game theory)
37N99Applications of dynamical systems
93C95Applications of control theory
Full Text: DOI
[1] A. Cournot, Researches into the principles of the theory of wealth, Engl. trans., chapter VII, Irwin Paper Back Classics in Economics (1963)
[2] Puu, T.: The complex dynamics with three oligopolists, Chaos solitons fractals 7, 2075-2081 (1996)
[3] Agiza, H. N.; Bischi, G. I.; Kopel, M.: Multistability in a dynamic cournot game with three oligopolists, Math. comput. Simul. 51, 63-90 (1999)
[4] Agiza, H. N.: Explicit stability zones for cournot games with 3 and 4 competitors, Chaos solitons fractals 9, 1955-1966 (1998) · Zbl 0952.91003 · doi:10.1016/S0960-0779(98)00006-X
[5] Agliari, A.; Gardini, L.; Puu, T.: The dynamics of a triopoly game, Chaos solitons fractals 11, 2531-2560 (2000) · Zbl 0998.91035 · doi:10.1016/S0960-0779(99)00160-5
[6] Agiza, H. N.; Elsadany, A. A.: Nonlinear dynamics in the cournot duopoly game with heterogeneous players, Physica A 320, 512-524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[7] Agiza, H. N.; Elsadany, A. A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl. math comput. 149, 843-860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[8] Zhang, J.; Da, Q.; Wang, Y.: Analysis of nonlinear duopoly game with heterogeneous players, Econ. model 24, 138-148 (2007)
[9] Elabbasy, E. M.; Agiza, H. N.; Elsadany, A. A.; El-Metwally, H.: The dynamics of triopoly game with heterogeneous players, Int. J nonlinear sci. 3, 83-90 (2007)
[10] Bischi, G. I.; Galletgatti, M.; Naimazada, A.: Symmetry-breaking bifurcations and representative firm in dynamic duopoly games, Ann. oper. Res. 89, 253-272 (1999) · Zbl 0939.91017 · doi:10.1023/A:1018931824853
[11] Elaydi, S. N.: An introduction to difference equations, (1996) · Zbl 0840.39002
[12] Kaplan, J. L.; Yorke, Y. A.: A regime observed in a fluid flow model of Lorenz, Comm. math. Phys. 67, 93-108 (1979) · Zbl 0443.76059 · doi:10.1007/BF01221359
[13] Cartwright, J. H. E.: Nonlinear stiffness, Lyapunov exponents, and attractor dimension, Phys. lett. A 264, 298-304 (1999) · Zbl 0949.37014 · doi:10.1016/S0375-9601(99)00793-8
[14] Stefanski, K.: Modelling chaos and hyperchaos with 3-D maps, Chaos, solitons fractals 9, 83-93 (1998) · Zbl 0934.37033 · doi:10.1016/S0960-0779(97)00051-9
[15] Pyrages, K.: Continuous control of chaos by self-controlling feedback, Phys. lett. A 170, 421-428 (1992)
[16] Holyst, J. A.; Urbanowicz, K.: Chaos control in economical model by time-delayed feedback method, Physica A 287, 587-598 (2000)
[17] J. Ma, L. Mu, Complex dynamics in a nonlinear Cobweb model for real estate market, Discrete Dynamics in Nature and Society, vol. 2007, Article ID 29207, 14 pages, 2007 · Zbl 1179.91160 · doi:10.1155/2007/29207