×

zbMATH — the first resource for mathematics

Global set stabilisation of the spacecraft attitude using finite-time control technique. (English) Zbl 1165.93328
Summary: We revisit the classical problem of attitude stabilisation for a rigid spacecraft with external disturbances. A global set stabilisation method using finite-time control technique is proposed. In the absence of disturbances, the states of the closed loop system will be stabilised in finite time to a set consisting of two equilibria. In the presence of disturbances, the states will be stabilised to a neighbourhood of this set. By constructing a particular Lyapunov function, it is proved that the closed-loop system satisfies global set stability. The control method in this article is based on set control idea and thus is more natural and energy-efficient. Numerical simulation results show the effectiveness of the method.

MSC:
93C95 Application models in control theory
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory
93D99 Stability of control systems
93B35 Sensitivity (robustness)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/S0005-1098(01)00064-4 · Zbl 0980.93064
[2] Bhat SP, in Proceedings of the American control conference 4 pp 2513– (1997)
[3] DOI: 10.1109/9.668834 · Zbl 0925.93821
[4] DOI: 10.1137/S0363012997321358 · Zbl 0945.34039
[5] DOI: 10.1016/S0167-6911(99)00090-0 · Zbl 0986.93063
[6] Chaturvedi, NA and McClamroch, NH. 2006. Almost Global Attitude Stabilisation of an Orbiting Satellite Including Gravity Gradient and Control Saturation Effects. Proceedings of American Control Conference. 2006. pp.1748–1753.
[7] DOI: 10.1109/9.618253 · Zbl 0889.93023
[8] Ding, S and Li, S. 2007. Stabilization of the Attitude of a Rigid Spacecraft with External Disturbances using Finite-time Control Techniques. Proceedings of American Control Conference. 2007. pp.2459–2464.
[9] DOI: 10.2514/3.20303 · Zbl 0659.93044
[10] DOI: 10.1016/S0005-1098(02)00147-4 · Zbl 1015.93006
[11] DOI: 10.1049/ip-cta:20040311
[12] DOI: 10.1137/0324047 · Zbl 0603.93005
[13] Hardy GH, Inequalities (1952)
[14] DOI: 10.1109/9.905699 · Zbl 0992.93075
[15] DOI: 10.1109/TAC.2006.886515 · Zbl 1366.93577
[16] DOI: 10.1016/j.automatica.2004.11.036 · Zbl 1098.93032
[17] DOI: 10.1109/9.467669 · Zbl 0841.93059
[18] Kane TR, Spacecraft Dynamics (1983)
[19] DOI: 10.1109/9.400476 · Zbl 0825.93553
[20] DOI: 10.1109/9.384228 · Zbl 0827.73050
[21] DOI: 10.1109/9.763225 · Zbl 1136.93424
[22] DOI: 10.1109/TAC.2006.874991 · Zbl 1366.93507
[23] DOI: 10.1080/00207170601148291 · Zbl 1117.93004
[24] Liao XX, Mathematical Theory and Application of Stability (1988)
[25] Lin, Y, Sontag, ED and Wang, Y. 1994. Recent Results on Lyapunov-Theoretic Techniques for Non-linear Stability. Proceedings of the American Control Conference(Vol. 2). 1994. Vol. 2, pp.1771–1775.
[26] Lin, Y, Sontag, ED and Wang, Y. 1995. Various Results Concerning set Input-to-state Stability. Proceeding of and IEEE Conference on Decision and Control,New Orleans. 1995. pp.1330–1335.
[27] DOI: 10.1109/9.486654 · Zbl 0846.93065
[28] Lu, J and Wie, B. 1994. Nonlinear Quaternion Feedback Control for Spacecraft via Angular Velocity Shaping. Proceedings of the American Control Conference. 1994. pp.632–634.
[29] Moore R, Fundamentals of Space Systems (1994)
[30] DOI: 10.1016/j.jmaa.2005.11.046 · Zbl 1131.93043
[31] DOI: 10.1016/j.ast.2005.01.002 · Zbl 1195.70052
[32] DOI: 10.1016/S0167-6911(00)00089-X · Zbl 0974.93050
[33] DOI: 10.1109/TAC.2005.849253 · Zbl 1365.93415
[34] Rouche N, Stability Theory by Liapunov’s Direct Method (1977) · Zbl 0364.34022
[35] Tsiotras, P. 1996. Optimal Control of Rigid Body Angular Velocity With Quadratic Cost. Proceedings of the 35th Conference on Decision and Control. 1996, Kobe, Japan. pp.1630–1635.
[36] Wang Z, Asian Journal of Control
[37] DOI: 10.2514/3.21698 · Zbl 0854.93104
[38] DOI: 10.2514/3.20095 · Zbl 0596.93031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.