zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses. (English) Zbl 1166.34328
This paper discusses existence and global exponential stability of an equilibrium point of Cohen-Grossberg bidirectional associative memory neural networks with delays and impulses. The proof is based on topological degree theory, Lyapunov functional method and some analytic techniques.

34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
92B20General theory of neural networks (mathematical biology)
Full Text: DOI
[1] Cohen, M.; Grossberg, S.: Stability and global pattern formation and memory storage by competitive neural networks, IEEE trans syst, man cyber 13, 815-826 (1983) · Zbl 0553.92009
[2] Hopfield, J. J.: Neuron with graded response have collective computational properties like those of two-state neurons, Proc natl acad sci USA 81, 3088-3092 (1984)
[3] Kosto, B.: Bi-directional associative memories, IEEE trans syst, man cyber 18, 49-60 (1988)
[4] Zho, H.: Global stability of bidirectional associative memory neural networks with distributed delays, Phys lett A 297, 182-190 (2002) · Zbl 0995.92002 · doi:10.1016/S0375-9601(02)00434-6
[5] Liang, J.; Cao, J.: Exponential stability of continuous and discrete-time bidirectional associative memory networks with delays, Chaos, solitons & fractals 22, 773-785 (2004) · Zbl 1062.68102 · doi:10.1016/j.chaos.2004.03.004
[6] Guan, Z. H.; James, L.; Chen, G.: On impulsive auto-associative neural networks, Neural networks 13, 63-69 (2000)
[7] Akca, H.; Alassar, R.; Covachev; Covacheva, Z.; Al-Zahrani, E.: Continuous-time additive Hopfield-type neural networks with impulses, J math anal appl 290, 436-451 (2004) · Zbl 1057.68083 · doi:10.1016/j.jmaa.2003.10.005
[8] Li, Y. K.: Globe exponential stability of BAM neural networks with delays and impulses, Chaos, solitons & fractals 24, 279-285 (2005) · Zbl 1099.68085
[9] Chen, T.; Rong, L.: Delay-independent stability analysis of Cohen -- Grossberg neural networks, Phys lett A 317, 436-449 (2003) · Zbl 1030.92002 · doi:10.1016/j.physleta.2003.08.066