## New results for the periodic boundary value problem for impulsive integro-differential equations.(English)Zbl 1166.45002

Consider $$J= [0,T]$$, $$T> 0$$, the continuous function $$f: J\times\mathbb R^3\to\mathbb R$$, the continuous functions $$I_k:\mathbb R\to\mathbb R$$, $$1\leq k\leq m$$, $$0= t_0< t_1<\cdots< t_m< t_{m+1}= T$$, the set $$D= \{(t,s)\in J\times J$$; $$t\geq s\}$$, the functions $$K\in C(D,[0,+\infty))$$, $$H\in C(J\times J,[0,+\infty))$$ and the functions
$[{\mathcal T}u](t)= \int^t_0 K(t,s)u(s)\,ds,\quad t\in J,\qquad [{\mathcal S}u](t)= \int^T_0 H(t,s)u(s)\,ds,\quad t\in J,$
where $$u: J\to\mathbb R$$.
Suppose that there exist the limits
$u(t^+_k)= \lim_{\substack{ t\to t_k\\ t< t_k}} u(t),\quad u(t^-_k)= \lim_{\substack{ t\to t_k\\ t> t_k}} u(t),\quad 1\leq k\leq m,$
and denote $$\Delta u(t_k)= u(t^+_k)- u(t^-_k)$$, $$1\leq k\leq m$$.
The authors consider the first-order impulsive integrodifferential equation
$u'(t)= f(t,u(t), [{\mathcal T}u](t), [{\mathcal S}u](t)),\quad t\in J\setminus\{t_1,\dots, t_m\}\tag{1}$
with periodic boundary value conditions
$\begin{cases} \Delta u(t_k)= I_k(u(t_k)),\quad & 1\leq k\leq m,\\ u(0)= u(T)\end{cases}\tag{2}$
and prove some comparison principles and establish existence results for extremal solutions $$u$$ of the problem $$(1)\wedge (2)$$ using these principles and the monotone iterative technique.
For example, they consider the Banach spaces $$(PC(J),\|.\|_{PC})$$ and $$(PC^1(J),\|.\|_{PC^1})$$, where
$\begin{split} PC(J)= \{u: J\to\mathbb R; u|_{(t_k,t_{k+1}]}\in C((t_k, t_{k+1}[,\mathbb R),\;0\leq k\leq m,\;\exists u(t^+_k),\\ \exists u(t^-_k)= u(t_k),\;1\leq k\leq m\},\end{split}$
$\begin{split} PC^1(J)= \{u\in PC(J); u|_{(t_k, t_{k+1})}\in C^1((t_k, t_{k+1}],\mathbb R),\;0\leq k\leq m,\;\exists u'(0^+),\\ \exists u'(T^-),\;\exists u'(t^+_k),\;\exists u'(t^-_k),\;1\leq k\leq m\}\end{split}$
with the norms $$\| u\|_{PC}= \sup\{|u(t)|; t\in J\}$$, respectively, $$\| u\|_{PC^1}= \| u\|_{PC}+\| u'\|_{PC}$$ and if there exist the functions $$\alpha$$ and $$\beta$$ in $$PC^1(J)$$, $$\alpha\leq \beta$$, satisfying some hypotheses, then there exist monotone sequences $$(\alpha_n)_n$$, $$(\beta_n)_n$$ of functions with $\alpha= \alpha_0\leq \alpha_n\leq \beta_n\leq \beta_0= \beta,\quad n\in\mathbb{N},$ which converge uniformly on $$J$$ to the extremal solutions $$u$$ of the problem $$(1)\wedge (2)$$ in
$[\alpha,\beta]= \{u\in PC(J);\, \alpha(t)\leq u(t)\leq \beta(t),\,t\in J\}.$

### MSC:

 45J05 Integro-ordinary differential equations 45L05 Theoretical approximation of solutions to integral equations
Full Text:

### References:

 [1] Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002 [2] Rogovchenko, Y.V., Impulsive evolution systems: main results and new trends, Dynam. contin. discrete impuls. systems, 3, 57-88, (1997) · Zbl 0879.34014 [3] Zavalishchin, S.T.; Sesekin, A.N., Dynamic impulse systems, () · Zbl 0538.49024 [4] Samoilenko, A.M.; Perestyuk, N.A., Impulsive differential equations, (1995), World Scientific Singapore · Zbl 0837.34003 [5] Zhang, W.; Fan, M., Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. comput. model., 39, 479-493, (2004) · Zbl 1065.92066 [6] Yan, J.; Zhao, A.; Nieto, J.J., Existence and global attractivity of positive periodic solution of periodic single-species impulsive lotka – volterra systems, Math. comput. model., 40, 509-518, (2004) · Zbl 1112.34052 [7] Li, W.; Huo, H., Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics, J. comput. appl. math., 174, 227-238, (2005) · Zbl 1070.34089 [8] Tang, S.; Chen, L., Density-dependent birth rate, birth pulses and their population dynamic consequences, J. math. biol., 44, 185-199, (2002) · Zbl 0990.92033 [9] Zhang, X.; Shuai, Z.; Wang, K., Optimal impulsive harvesting policy for single population, Nonlinear anal.: RWA, 4, 639-651, (2003) · Zbl 1011.92052 [10] d’Onofrio, A., On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. math. lett., 18, 729-732, (2005) · Zbl 1064.92041 [11] Gao, S.; Chen, L.; Nieto, J.J.; Torres, A., Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037-6045, (2006) [12] Gao, S.; Teng, Z.; Nieto, J.J.; Torres, A., Analysis of an SIR epidemic model with pulse vaccination and distributed delay, J. biotechnol. biomed., 2007, 10 pp, (2007), Article ID 64870 [13] H. Zhang, L. Chen, J.J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal.: RWA, in press (doi:10.1016/j.nonrwa.2007.05.004) · Zbl 1154.34394 [14] Zeng, G.; Wang, F.; Nieto, J.J., Complexity of delayed predator – prey model with impulsive harvest and Holling type-II functional response, Adv. complex syst., 11, 77-97, (2008) · Zbl 1168.34052 [15] He, Z.; He, X., Periodic boundary value problems for first order impulsive integro-differential equations of mixed type, J. math. anal. appl., 296, 8-20, (2004) · Zbl 1057.45002 [16] He, Z.; He, X., Monotone iterative technique for impulsive integro-differential equations with periodic boundary conditions, Comput. math. appl., 48, 73-84, (2004) · Zbl 1070.65136 [17] Li, J.; Shen, J., Periodic boundary value problems for impulsive integro-differential equations, Appl. math. comput., 183, 890-902, (2006) · Zbl 1111.45007 [18] Nieto, J.J.; Rodríguez-López, R., New comparison results for impulsive integro-differential equations and applications, J. math. anal. appl., 328, 1343-1368, (2007) · Zbl 1113.45007 [19] Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S., Monotone iterative techniques for nonlinear differential equations, (1985), Pitman Boston · Zbl 0658.35003 [20] Cabada, A.; Nieto, J.J., Fixed points and approximate solutions for nonlinear operator equations, J. comput. appl. math., 113, 17-25, (1999) · Zbl 0954.47038 [21] Heikkila, S.; Lakshmikantham, V., Monotone iterative techniques for discontinuous nonlinear differential equations, (1994), Marcel Dekker, Inc. New York · Zbl 0804.34001 [22] S. Brzychczy, Monotone iterative methods for nonlinear parabolic and elliptic differential-functional equations, Dissertations Monographs N 20, Wydawnictwa Akademii Grniczo-Hutniczej (AGH), Krakow, 1995 [23] Nieto, J.J., An abstract monotone iterative technique, Nonlinear anal., 28, 1923-1933, (1997) · Zbl 0883.47058 [24] Koksal, S.; Lakshmikantham, V., Unified approach to monotone iterative technique for semilinear parabolic problems, Dyn. contin. discrete impuls. syst. ser. A math. anal., 10, 539-548, (2003) · Zbl 1024.35048 [25] Jiang, D.; Nieto, J.J.; Zuo, W., On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations, J. math. anal. appl., 289, 691-699, (2004) · Zbl 1134.34322 [26] Nieto, J.J.; Rodriguez-Lopez, R., Monotone method for first-order functional differential equations, Comput. math. appl., 52, 471-484, (2006) · Zbl 1140.34406 [27] Chen, L.; Sun, J., Nonlinear boundary problem of first order impulsive integro-differential equations, J. comput. appl. math., 202, 392-401, (2007) · Zbl 1122.45007 [28] Nieto, J.J., Basic theory for nonresonance impulsive periodic problems of first order equations, J. math. anal. appl., 205, 423-433, (1997) · Zbl 0870.34009 [29] Li, J.; Nieto, J.J.; Shen, J., Impulsive periodic boundary value problems of first order differential equations, J. math. anal. appl., 325, 226-236, (2007) · Zbl 1110.34019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.